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Characterisation of the robustness of weighted
networks, a rst step to better understand the
context of humanitarian operations
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Abstract In situations where crises are succeeding one to another, it is impor-
tant to understand and measure the strengths and weaknesses of one’s logistics
network. This observation applies to many companies. It is even more relevant
for humanitarian organizations, who are confronted to increased demand for
humanitarian aid without having a sucient budget to cover all present and
future needs. Our proposal allows to visualize these strategic points, using
complex networks. We measure the robustness of local infrastructures (health
and logistics) by simulating its response in the event of a crisis. Non binary
attacks, where nodes and/or links are damaged but not removed entirely are
used in order to remain as close as possible to the real phenomenon, where the
damages suered by infrastructures may hinder their capacity but not always
totally destroy it. We also use weighted networks. This work is carried out in
close collaboration with Handicap International, so as to validate the relevance
of the approach and its applicability through real applications.

Keywords Complex Systems · Robustness · Percolation · Humanitarian
Logistics

1 Non Binary Percolation

According to Bellingeri et al., assessing the robustness of real-world systems
with a percolation threshold is relevant only if at least two assumptions are
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veried. Firstly, during the percolation process, the binary (ı.e. unweighted)
modeling of the network should not over simplify the system. Secondly, the
binarity of the theoretical attack (spared or deleted) should match with the
actual pressure [2]. However, some complex real-world systems do not satisfy
these assumptions. Networks are not only specied by their topology but also
by the dynamics of information or trac ow taking place on the structure
[1]. In particular, the intensity of connections may be very important in the
understanding of some systems. For example, in a transportation network,
roads have dierent trac capacity, a highway will be much busier than a
trunk road. Here assumption (i) would not be veried. Plus, in real-world
context, the articles [7, 3, 2] warn that a system can collapse long before the
connections between the elements are broken. In other worlds, accidents or
trac jams could seriously slow down trac while the roads remain open.

This summary proposes an approach that we call the non binary percola-
tion (NBP) to evaluate the robustness of networks. This theory is in line with
the percolation but it allows to take into account the weighting of networks
and the resistance of elements under pressure. We consider that the weights
represent a ow, a service or an exchange capacity. When a system is under
pressure, its elements struggle to remain functional but do not systematically
collapse. This observation is modeled by a non-binary attack. Elements can
be spared or deleted, but also damaged, and therefore less eective.

2 Robustness Indicators

Xing Pan and Huixiong Wang highlight that the conclusions about robustness
depend to a large extent on the chosen indicators [8]. Bellingeri et al. establishe
that deleting a very small fraction of selected edges does not necessarily aect
the largest connected component (LCC) but it can produce a rapid collapse
of weighted condition measures [2]. Consequently, it is of primary importance
to choose the right health indicator.

We consider four potential robustness indicators :
S. Usual percolation uses S (the fraction of nodes belonging to the LCC)

to evaluate the state of the network and denes the robustness by the perco-
lation threshold pc. It is commonly used, but it evaluates only the topological
connectedness of the network, and neglects the weights [2, 8].

Ef. Eciency allows a precise analysis of the information ow on weighted
networks and informs on the average distance between nodes [5].

Efthr. Similarly to percolation threshold, we dene Ethr as the smallest
p such that E is not zero. When the attack is suciently destructive, the
simulation shows a phase transition at point Ethr exactly as in percolation.

Efint. As proposed in [6] in a classical percolation context, we suggest to
use the area under the curve of the E during the NBP process. The larger the
area, the greater the E during the process. This measure allows to hierarchize
the robustness of the networks regardless of the Ethr value and reects the
overall behavior of the network during all of the attacks.
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Nm N L E V E Efthr Efint Sthr pc
USAr97 332 2126 0.14 0.01 0.43 0.73 0.05 0.37 0.02
C. lns 297 1720 0.05 0.01 0.34 0.78 0.04 0.52 0.05

Dolpn solston 151 1554 0.24 0.01 0.62 0.53 0.13 0.21 0.03

()

() ()

Fig. 1 () Sttsts on rls ntworks () Dr strutons. () NBP pross.
Ln : Dolpn solston (yllow), C. lns (rn) n USAr97 (lu).

3 Simulation on Real networks

In this section, we apply our approach to real networks : USAir97, which
describes air routes between American airports, C. elegans, which describes
the worm brain network [4], and Dolphin socialisation, which is the result
of 124 days of dolphin watching in the Cedar Key area, Florida.

The usual percolation gives the following theoretical thresholds 0.02, 0.03
and 0.05 for respectively USAir97, Dolphin socialisation and nally C. elegans.
NBP delivers more contrasting and dierent scores. The ranking is not the
same either, as illustrated in gure 1(a). We observe a phase transition of
Eint. Figure 1(c) reveals that Dolphin socialisation are much more robust
with Eint = 0.13, then USAir97 with 0.05, and C. elegans with 0.04. We
can see, especially for the dolphin socialisation network, that considering the
condition of a network by its topology leads to an overestimation of its health.

With those robustness indicators, we intend to measure the robustness of
huanitarian response networks, such as the one presented by Figure 2.

4 Conclusion

We propose to perform a non binary percolation to measure the robustness
of existing networks if a large-scale natural crisis occurs. Dierent indicators
of robustness are possible here. We can cite the classic indicator, S, which is
calculated by determining the fraction of the remaining nodes located in the
giant component. Other indicators related to the eciency of the system, its
ability to transmit product ows even when damaged are being studied. This
summary focuses on various possibilities to measure the robustness of the
networks. It is a preliminary study, before application to real humanitarian
logistics networks. The possibilities oered by network theory are numerous
and make it possible to better exploit the available datasets in order to improve
the crisis response process.
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Fig. 2 For Atls rprsntton o t ntwork urn rl oprton n Ht tr ot
t rtquk n t olr outrk, n o 2010
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