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II. SIMPLICIAL COMPLEXES

A. Simplicial Complexes...

Simplices are generalisations of triangles to arbitrary dimensions. They are widely studied in

algebraic topology since the end of the nintenth century [1] and are now being studied in the

light of data analysis. Simplices are points (dimension zero), segments (dimension one), triangles

(dimensions two), tetrahedrons (dimension three), etc. Each k-dimensional simplex consists of

k+ 1 vertices linked by simplices of lower dimensions. For example, in a tetrahedron, each pair

of vertices forms an edge, and each triplet forms a triangle. Any non-empty subset of vertices

included in a simplex is said to form a face of this simplex, and a k-face whenever its dimension

is k. A simplex with k + 1 vertices is said to be of dimension k. In a k-simplex, (k − 1)-faces

are called facets of the simplex.

Simplicial complexes are obtained by glueing together simplices with the basic rule that any

two simplices of the complex only intersect on simplices of lower dimensions. Additionally,

every face of a simplex contained in the complex is also in the complex (the simplicial complex
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Fig. 1. A simplicial complex. It has two maximal simplices (facets): a 1-dimension edge {A,E} and a 4-dimensions tetrahedron

{A,B,C,D}.

is closed by inclusion). A simplicial complex is said to have dimension k (and is then denoted

simplicial k-complex) if the dimension of its highest dimensional simplex is k. Then, the facets

of the simplicial complex are simply its maximal simplices.

Figure 1 shows an example of a simplicial complex obtained by glueing an edge and a

tetrahedron. The facets of this simplicial complex are {A,E} and {A,B,C,D}.
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Fig. 2. Simplicial complexes are families of sets closed by inclusion. As so, they can be ordered as meet-semilattices, where the

maximal elements are the maximal simplices of the complexe. This shows the meet-semilattice corresponding to our example

in Fig. 1. Here, the two maximal elements are the two maximal simplices of Fig. 1. All of the elements of this order, except

for the empty set, are themselves simplices.
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The `-skeleton of a simplicial k-complex is a representation of this complex with no simplex

of dimension higher than `. In our example (Fig. 1), the 2-skeleton of the simplicial complex

can be inferred by deleting the tetrahedron {A,B,C,D}. The maximal simplices are then of

dimension two. The 1-skeleton of the same simplicial complex is shown in Fig. 3. In a 1-skeleton,

only vertices and edges are shown. The 1-skeleton can be thought of as the underlying graph of

the simplicial complex.
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Fig. 3. Faces of dimension higher than 1 are forgotten when dealing with the 1-skeleton.

B. ... And Where to Find Them

1) In theory: Independence systems and more generally accessible systems, which are classes

of set systems that contain simplicial complexes, are well known to be useful in the design

of efficient enumeration algorithms in data mining applications [2]–[4]. Matroid are simplicial

complexes that satisfy an additional condition (the augmentation property). They are widely used

as basis for greedy algorithms [5], can be inferred from data [6] and are transversal to lots of

fields of computer science and mathematics [7], [8].

2) In practice:

a) Topological Data Analysis: Underlying both traditional Graphs Signal Processing and the

use of simplicial complexes in data analysis lurks the very same idea. The idea that the topology

(of a graph for GSP, of the local constraints between simplices for simplicial complexes) of the

data has meaning, and not only the coordinates of its data points.

Topological data analysis deals with the shape of data by transforming point clouds into

simplicial complexes. An overview of TDA can be found in these papers [9], [10] and the

TDA community gives numerous ways of creating simplicial complexes from data points, inter

alia though the use of lenses and the MAPPER algorithm. In those approaches, the vertices of

the simplicial complexes are usually clusters of data points rather than individual data points.
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Figure 4 shows an example of a simplicial complex obtained using MAPPER. A lense in MAPPER

is a clustering function that projects data points onto a k-dimensional spaces. Each cluster yield

a point on this space. Intersecting clusters form simplices, so that the whole system forms a

simplicial complex. By varying the lenses and its parameters, topological data analysts are able

to infer new knowledge from the shape of the data. Then, the signal can be drawn from the

original dataset, as a mean or any combination of the clustered data points.

Fig. 4. Left: A data points cloud and a covering with cirlces. Right: Simplicial complex build from the points on the left. Two

vertices are linked if the corresponding clusters share points.

b) Smart city and sensor classes: In [11], the authors propose a framework for a smart city

based on the Internet of Things (IoT). This framework uses both fixed and mobiles sensors, so

the coordinate of the sensors may vary. In such cases, sensors might be linked if they are able

to communicate with each other, and higher arity simplices can represent either similar sensors

(temperature, sound, pollution), sensors on similar devices (mobile phones, vehicles) or in the

same building. This kind of high dimensional modeling allows not only to perform different data

analysis but also to consider reprogramming all sensors of a kind at the same time, changing

communication protocols for a class of sensors or similar tasks.

c) More generally: hypergraphs: As we will discuss in the next section, our approach

can be used directly on hypergraphs. The applications of hypergraphs in data analysis are

numerous. Some can be found in this 1995’s survey [12] focusing on the problems related

to the computation of hypergraph transversals. In biology [13] and bio-chemistry [14] and

chemistry [15], hypergraphs are used extensively to model complex interactions between proteins,

chemicals or species. An example of high arity relation between proteins is shown in Figure 5.
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Other applications can be found surrounding geometric objects [16], image approximation [17],

extraction of a skeleton from a data cloud [18] or itemset mining [19] in high dimensional

datasets.
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E

Fig. 5. This hypergraphs models interactions between five proteins. Signals associated with the vertices can be concentration,

number, temperature, etc. This figure is inspired by the example in [13]. It shows that a n-ary relation cannot be represented

by binary relations without a loss of informations.

III. GENERALIZED LAPLACIAN

Recall that graph signal processing relies heavily on the notion of “shift operator". A popular

choice is the graph Laplacian. We start by generalizing this notion.

Definition 1. Let X be a finite metric space of size |X| = n. A generalized Laplacian consists

of the following data:

(A) a weighted, undirected graph G = (V ′, E ′),

(B) a set function f : X → V ′, and

(C) A linear transformation T : R|X| → R|V ′|,

such that the following holds:

(a) f is one-one,

(b) the f(v) component T (x) is the same as the v component of v for each v ∈ X and x ∈ R|X|,

and

(c) the sum of each row of T is a constant.

Let LG be the Laplacian of the weighted graph G. The generalized Laplacian associated with

the data (G, f, T ) is defined as

L(G,f,T ) = T ′ ◦ LG ◦ T : R|V | → R|V |.

We may abbreviated L(G,f,T ) by LX if no confusion arises from the context.
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We give some intuitions on Definition 1. We require that f is one-one to ensure that f

“embeds" X in G such that we may perform the shift operation on G. Condition (b) and (c) on

T is saying roughly that the signal on v ∈ X is preserved at its image of f in G, otherwise an

averaging process takes place.

Lemma 1. (a) LX is symmetric.

(b) LX is positive semi-definite.

(c) Constant signals are in the 0 eigenspace of LX . The 0-eigenspace E0 of LX is 1-dimensional

if and only if G is connected.

Proof: (a) LX is symmetric because G is assumed to be undirected and hence LG is

symmetric.

(b) Similar to (a), LX is positive semi-definite because LG is positive semi-definite.

(c) As we assume that the sum of each row of T is a constant, therefore if x is a constant vector,

then so is T (x). Since constant vectors are in the 0-eigenspace of LG, we have LG ◦ T (x) = 0

and so is LX(x). Therefore, the dimension of E0 is at least 1.

Now assume that x is in E0. Therefore,

0 = 〈x, LX(x)〉 = 〈T (x), LG ◦ T (x)〉.

Consequently, T (x) belongs to the 0-eigenspace of LG, which is 1-dimensional if and only if

LG is connected.

By Condition (b), the operator T is injective. Therefore, E0 is 1-dimensional if and only if

T (E0) is 1-dimensional, which is in turn equivalent to G being connected as we just observe.

By Lemma 1, the generalized Laplacian LX enjoys a few desired properties. In particular, being

symmetric permits an orthonormal basis consisting of eigenvectors of LX . Therefore, one can

devise a Fourier theory analogous to traditional GSP. Moreover, as LX is positive semi-definite,

we may perform smoothness based learning. The constant vectors belong to the 0-eigenspace is

also desirable as it agrees with the intuition that “constant signals are smoothest".

On the other hand, Lemma 1 asserts that LX is indeed very similar to the Laplacian of a

graph. The theory will be less useful if we are only able to produce weighted graph Laplacian,

which we shall prove to be untrue. To this point, we introduce the following notion.
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Definition 2. We call LX is of graph-type if all the diagonal entries of LAX
are non-negative

and all the off-diagonal entries are non-positive.

Now we are going to give an explicit construction of LX together with the choice of G, f and

T . As an implicit requirement, we would like the construction to recover the usual Laplacian if

X is a graph.

For the simplest case, assume X ∼= ∆n is a weighted n-simplex, i.e., X is homeomorphic

to the standard n-simplex and its 1-skeleton X1 is a weighted graph. We label the vertices of

X by v1, . . . , vn+1. The graph GX = (V,E) is constructed as follows: V = {v1, . . . , vn+1, u}

with a single additional vertex u, which is understood as the barycenter of X . There is no edge

between vi and vj for any pair 1 ≤ i 6= j ≤ n + 1. On the other hand, (vi, u) ∈ E for each

1 ≤ i ≤ n+ 1.

The edge weight w(vi, u) of (vi, u) is computed as follows:

w(vi, u) =
1(
n
2

)(
∑

vi 6=vj 6=vk 6=vi

(vj, vk)vi),

where (vj, vk)vi is the Gromov product defined in ??.

Illustrations for X ∼= ∆2 and X ∼= ∆3 are shown in Figure 6.

We have a canonical choice for T : T (vi) = vi. For f , it is identity on the vi components,

while the average is assigned to the u component. In the matrix form,

f =



1 0 . . . 0

0 1 . . . 0
...

... . . . ...

0 0 . . . 1

1/(n+ 1) 1/(n+ 1) . . . 1/(n+ 1)


.

It is straightforward to verify (GX , T, f) verifies the condition of Definition 1. Thus, we have

an associated generalized Laplacian LX .

For a general finite X , we have a decomposition X as the union of maximal simplexes and

the generalized Laplacian

LX =
∑
σ

Lσ,

where the summation is taken over all maximal simplexes of X .



8

v1

v2

v3

v1

v2

v3

u

v1

v2 v3

v4

v1

v2 v3

v4

u

X ∼= ∆2 GX

GXX ∼= ∆3

Fig. 6. Graphical illustration of the shape of GX for X ∼= ∆2 and X ∼= ∆3.

To give some insights of the construction, we notice that for X ∼= ∆n, it is topologically a

point (more precisely, homotopy equivalent to a point). Therefore, if we want to approximate

X by a graph GX that preserves this topological property, GX must be a tree. In addition, if

we do not want to break the symmetry of the vertices, the most natural step to do so is to add

one additional node (the barycenter) connected to every vertex in the original graph. The edge

weights of GX are chosen to approximate the metric of X as close as possible.

Other evidence for the construction shall be discussed in subsequent sections. We end this

section with the example when X itself is a graph.

Example 1. As a warm-up, we consider the case that X is itself a graph. The maximal simplexes

are just edges. For an edge e = (v1, v2) with weight w. The associated graph Ge contains 3

nodes, v1, v2 and an additional node u. As there are only two indices, the edge weight is computed

slightly differently as w(vi, u) = (v3−i, v3−i)vi = w. Hence the generalized Laplacian is computed
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as

Le =

1 0 1/2

0 1 1/2



w 0 −w

0 w −w

−w −w 2w




1 0

0 1

1/2 1/2

 =

 w −w

−w w

 .
This recovers the usual Laplacian for the edge e. Summing over all the edges, we see that the

generalized Laplacian is the same as the usual Laplacian.

IV. 2-COMPLEXES

In this section, we focus on 2-complexes, on which the main applications base on. For a

weighted to simplex X ∼= ∆2, assume that the edge weights are w(v1, v2), w(v1, v3) and w(v2, v3).

The edge weights of GX are

a = (v2, v3)v1 = (w(v1, v3) + w(v1, v2)− w(v2, v3))/2,

b = (v1, v3)v2 = (w(v2, v3) + w(v1, v2)− w(v1, v3))/2,

c = (v1, v2)v3 = (w(v1, v3) + w(v2, v3)− w(v1, v2))/2.

If the edge weights satisfy the triangle inequality, then a ≥ 0, b ≥ 0, c ≥ 0. Conversely, given

a ≥ 0, b ≥ 0, c ≥ 0, we are able to recover the edge weights by taking pairwise sums.

The generalized Laplacian LX is thus given by:

LX =


1 0 0 1/3

0 1 0 1/3

0 0 1 1/3



a 0 0 −a

0 b 0 −b

0 0 c −c

−a −b −c a+ b+ c




1 0 0

0 1 0

0 0 1

1/3 1/3 1/3



=
1

9


b+ c+ 4a c− 2a− 2b b− 2a− 2c

c− 2a− 2b a+ c+ 4b a− 2b− 2c

b− 2a− 2c a− 2b− 2c a+ b+ 4c

 .
Definition 3. Define the shape constant γX of X as

γX = min{5w(vi, vj)− w(vi, vk)− w(vj, vk)

2
, {i, j, k} = {1, 2, 3}}.

In general, γX can be negative. This happens when there is at least one very short edge. We

use it to address an issue left over from the previous section.
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Lemma 2. Suppose X ∼= ∆2 is a 2-simplex. Then LX is of graph type if and only if the γX ≥ 0.

Proof: A direct computation shows that

−γX = max{c− 2a− 2b, b− 2a− 2c, a− 2b− 2c}.

As the diagonal entries of LX are all positive, it is of graph type if and only if −γX ≤ 0, i.e.,

γX ≥ 0.

In the case of 2-simplex, we may also give the following interpretation of LX with the graph

Laplacian LX1 of the 1-skeleton X1.

Consider a graph signal x = (x1, x2, x3)
′ on the vertices {v1, v2, v3}. Let y be the first order

difference (x3−x2, x1−x3, x2−x1)′. By a direct computation, one observes that LX is determined

by

9〈x, LX(x)〉 = 〈y, LX1(y)〉.

It says LX is a higher order difference, though the point-of-view cannot be generalized beyond

dimension 2.

If X is a general 2-dimensional simplicial complex, the Laplacian LX takes contribution form

Laplacian of 2-simplexes computed as above and usual edge Laplacians. We next study spectral

properties of LX . In particular, we want to compare LX and LX1 as the latter is well-studied.

Recall that A � B if B − A is positive semi-definite.

Lemma 3. Suppose X is a finite 2-dimensional simplicial complex with each edge of length 1.

Let kmax and kmin be the largest and smallest numbers of 2-simplexes can share a single edge.

Then

max{kmin

3
,
1

3
} · LX1 � LX �

kmax

3
LX1 .

Proof: We sketch the main idea of the proof. It suffices to show L = LX−max{kmin

3
, 1
3
}·LX1

or L = kmax

3
LX1 − LX is the Laplacian of a (possibly disconnected) graph. For this, one only

need to compute the off-diagonal entries of L and show they are non-positive, which follows

from easy computation.

If X is a 2D-mesh (triangulation) of a compact 2-manifold, then kmin = 1 and kmax = 2. This

is because at most two 2-simplexes can share a common edge and along the boundary each edge

is contained in a single 2-simplex.
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Recall that a filter F is shift invariant w.r.t. LX1 if F ◦LX1 = LX1 ◦F . If the graph Laplacian

LX1 does not have repeated eigenvalues, then F is shift invariant if and only if F = P (LX1)

for some polynomial P of degree at most n − 1. The shift invariant family is of particular

interest and they are readily estimated as one only has to learn the polynomial coefficients. Due

to this fact, LX will be less interesting if it is shift invariant w.r.t. LX1 , e.g., when X is a single

2-simplex with equal edge weights (more examples are shown in Figure 7). However, this does

not happen in general.

G

(a) (b)

Fig. 7. In (a), if all the edge weights are the same then LX = 1/3LX1 is shift invariant w.r.t. LX1 . However, in (b), as long

as the 4 red nodes are contained in a graph G (at the center), then LX is not shift invariant w.r.t. LX1 by Proposition 1, even

if we allow arbitrary positive edge weights.

Proposition 1. Suppose X is a 2-complex such that the following holds (illustrated in Figure 8):

(a) In X , any two 2-simplexes are not connected by an direct an edge.

(b) In X , if a vertex v is not contained in any 2-simplex, then it is connected to at most one

2-simplex. There is at least one such vertex.

(c) Each edge is contained in at most one 2-simplex.

Then LX is not shift invariant w.r.t. LX1 .

Proof: The proof is given in Appendix A.

V. LEARNING SIMPLICIAL COMPLEX FROM SIGNALS ON A POINT CLOUD

In this section, we discuss the approach to learn a 2-complex structure X given the 1-skeleton

X1, or just the set of vertices X0, by probably using signals on X0.
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(a)

(b)

v

Fig. 8. Illustration of the two situation disallowed by the first two conditions of Proposition 1.

If X1 is an unweighted graph, we assign weight 1 to each edge. Otherwise, If pairwise

similarities of X0 are given, then we define the weights between (v1, v2) to be the inverse of

the similarity (i.e., we want two nodes to be closer if they are more similar).

The general idea goes as follows. We first identify all the set ∆X0 of all possible 2-simplexes.

Depending on the problem, there are two main cases:

(a) If X1 is given, then triple nodes (v1, v2, v3) belongs to ∆X0 if and only if (v1, v2), (v1, v3)

and (v2, v3) are all edges of X1.

(b) If only X0 is given, then we assums ∆X0 contains any triple (v1, v2, v3) of distinct nodes

in X0.

Given two non-negative numbers r1 ≤ r2, we define ∆X0(r1, r2) to be the subset of ∆X0

consisting of triples (v1, v2, v3) whose pairwise edge weights are within the closed interval

[r1, r2]. Apparently, if r′1 ≤ r1 ≤ r2 ≤ r′2, then ∆X0(r1, r2) ⊂ ∆X0(r′1, r
′
2). Hence, we have

the fundamental filtration ∅ = ∆X0(0, 0) ⊂ ∆X0(0, r) ⊂ ∆X0(0, r′) ⊂ ∆X0(0,∞) = ∆X0 for

r ≤ r′.

For the general framework, we would like perform the following steps:

(a) Order all the 2-simplexes of ∆X0 in a queue Q:

(i) Choose r0 = 0 ≤ r1 ≤ . . . ≤ rn such that ∆X0 = ∆X0(0, rn). A 2-simplex in
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∆X0(ri, ri+1) is always ordered before ∆X0(ri+1, ri+2).

(ii) We order the 2-simplexes of ∆X0(ri, ri+1) in such a way that 2-simplexes sharing many

common edges are ordered later in the queue, and we shall be more explicit later on.

(b) Partition Q as a disjoint union Q = ∪1≤i≤pQi such that there size are approximately uniform

and Qi takes the element of Q ranging from 1 +
∑

1≤j<i ||Qj| to
∑

1≤j≤i ||Qj|.

(c) Let X0 be X0 ∪ X1. For each 1 ≤ i ≤ p, we construct a 2-complex Xi be adding the

2-simplexes of Qi (and the associated edges) to Xi−1. Form the associated generalized

Laplacians Li = LXi
.

(d) Form convex combinations, Li,t = tLi+(1−t)Li+1. Learn the best i and t combination from

signals such as learning the best polynomial filter to fit data. The parameter i is discrete,

which can be only be learnt from exhausted search, while for each fixed i, t can be learnt

from continuous optimization.

For completeness, we describe the algorithm for Step (ii) (illustrated in Figure 9):

(a) For each i, randomly order the 2-simplexes of Qi to form Q.

(b) For j ranges from the 2-simplexes of Q (following the ordering), assume we have ordered

x1, . . . , xj . Search for the rest of the 2-simplexes of Q. If x is sharing a common edge with

xj , re-order Q by placing x at the end of Q. Once all x ∈ Q\{x1, . . . , xj} is gone through

once, repeat the procedure for xj+1.

Now, we describe in more details on how to use the approach to learn 2-complex structure of

X0 with signals on X0. In addition, we also want to discuss filter learn. The basic form of the

problem is specified as follows: there are two sets of signals f1, f2 on X0. Learn the structure

of X and an appropriate filter F that such that f2 = F (f1) + g, where g is the white noise. We

propose to solve the following optimization problem:

min
1≤i≤p

min
t∈[0,1]

(a0,...,ab)∈Rb+1

∥∥∥∥∥(
∑
1≤j≤b

ajL
j
i,t)(f1)− f2

∥∥∥∥∥
2

, (1)

where b is a pre-determined bound on the degree of the polynomial.

VI. SIMULATION RESULTS

Experiments:

2-simplex reconstruction

Outlier detection (malfunction)

Signal compression
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(a) (b)

(c) (d)

Fig. 9. In this example, the blue 2-simplexes in (b) are (randomly) ordered first in Q. After which, we have the pink 2-simplexes

in (c). Finally, the green 2-simplexes are ordered last in Q.

APPENDIX A

NON SHIFT INVARIANCE

In this appendix, we assume X is a 2-complex of size n and discuss conditions ensure LX

is not shift invariant w.r.t. LX1 . We are mainly interested in geometric conditions, which can be

observed directly from the shape of X . As a corollary, we prove Proposition 1.

For convenience, we introduce the following notion.

Definition 4. If a matrix M is the Laplacian of a weighted graph G, then we say M is of graph

type G. Moreover, we call X has distinctive 2-simplexes if (a) either LX −LX1 or LX1 −LX is

of graph type G; and (b) an edge e = (v1, v2) of G has positive edge weights when e belongs

to a 2-simplex of X .

Lemma 4. X has distinctive 2-simplexes if either of the following holds:

(a) kmax ≤ 1, i.e., each edge is contained in at most one 2-simplex.

(b) kmax ≤ 2 and all the edges have weight 1.

(c) kmin ≥ 4 and all the edges have weight 1.
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Proof: (a) As any constant vector is in the kernel of L = LX1 − LX , the sum of each row

is 0. If (i, j) is an edge of X not contained in any 2-simplex, then the (i, j)-th entry of L is 0. It

suffices to show that if (vi, vj) is any edge contained in a 2-simplex, then the (i, j)-th entry of L

is negative. Let a > 0 be the weight of (vi, vj) and b > 0, c > 0 be the weights of the other two

edges of the 2-simplex containing (vi, vj). A direct calculation shows that the (i, j)-the entry of

L is −(13a+ b+ c)/18 < 0.

(b) and (c) can be shown by the same argument by considering LX1 − LX and LX − LX1

respectively.

Assume for the rest of this section that X has distinctive 2-simplexes. We want to study

common vectors of both LX1 and LX . To this end, we divide the discussion into two parts: for

such an eigenvector, whether the associated eigenvalues are the same or different.

Definition 5. We call a vertex v is 1-interior if it is not contained in any 2-simplex and 2-interior

if each edge containing v belongs to a 2-simplex (see Figure 10 for an example).

Fig. 10. In this example, all the blue nodes are 1-interior and red nodes are 2-interior. Hence, for the parameters in Lemma 5(b)

m1 = 3 and m2 = m3 = 1. Moreover, in Lemma 6(b), m4 = 2 counts the two black nodes.

Lemma 5. (a) Let K be the vector space spanned by common eigenvectors with the same

eigenvalue of LX and LX1 . Then K is a space of ker(LX − LX1).

(b) Let m1 be the number of 1-interior nodes of X , m2 be the number of connected components

of smallest complex containing all the 2-simplexes of X , and m3 be the number of such

components containing some 2-interior nodes. Then dimK ≤ m1 +m2 −m3.
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Proof: (a) As we assume that X has distinctive 2-simplexes, LX1 − LX = LG or −LG for

some graph G whose positive edge weights are supported on 2-simplexes of X . Therefore, if

w is a common eigenvector with the same eigenvalue, then LG(x) = 0, i.e., w ∈ ker(LG). As

ker(LG) is a vector space, K as spanned by these v’s is also contained in ker(LG).

(b) Notice that ker(LG) is the same as the number of connected components of G. The set of

connected components of G consists of: (1) each 1-interior node of X is an isolated component

of G, (2) a union of 2-simplexes that is connected. They are of size m1 and m2 respectively.

Suppose a component C of the second type contains a 2-interior node v and w is a common

eigenvector with the same eigenvalue λ > 0. Then LX1(w)(v) = LG(w)(v) = 0. However,

LX1(w)(v) = λw(v), and hence w(v) = 0. Hence, w is 0 are all of C as w is constant on C.

Hence, the vectors of K vanishes on such a C. Therefore, dimK ≤ m1 +m2 −m3.

Now we consider common eigenvectors of LX1 and LX with different eigenvalues.

Lemma 6. Suppose w is a common eigenvectors of LX1 and LX with different eigenvalues.

Then

(a) w is 0 at 1-interior nodes of X .

(b) If v belongs to a 2-simplex and any 1-interior neighbor of v is not connected to any other

node belonging to a 2-simplex, then w is 0 at v. Denote the number of such vertices by

m4.

Proof: Suppose the eigenvalues of w are λ1 6= λ2.

(a) Let v be a 1-interior node. Then LX(w)(v) = LX1(w)(v) as the neighborhood of v in X

and X1 are identical. This implies that λ1w(v) = λ2w(v). This is possible only if w(v) = 0.

(b) Let v′ be a 1-interior neighbor of v. By (a), w(v′) = 0. As v′ is not connected to any

other node belonging to a 2-simplex, w is 0 at the neighbors of v′ except at v. Hence 0 =

LX1(w)(v′) = aw(v), where a is the positive edge weight between v and v′. This proves (b).

Now, we are ready to state and prove the main result of this section.

Theorem 1. If dimK ≤ m1+m4 < n, then there does not exist any orthonormal basis consisting

of common eigenvectors of both LX1 and LX . In particular, this holds if m2 ≤ m3 +m4.

Proof: Suppose on the contrary that W = {w1, . . . , wn} (column vectors) is an orthonormal

basis consisting of common eigenvectors of LX1 and LX . There are at most dimK vectors of W

each shares the same eigenvalue. Without loss of generality, assume they are {w1, . . . , wdimK}
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and let w1 be the constant vector (1/
√
n, . . . , 1/

√
n)′. Moreover, by re-indexing, we further

assume that the first m1 + m4 indices correspond to the set S of 1-interior nodes and nodes

satisfy Lemma 6(b).

By abuse of notation, write W for the n×n matrix whose i-th column being wi. As the columns

of W forms a orthonormal basis, so do the rows of W . On the other hand, by Lemma 6, only

the leading (m1 +m4)×dimK block W1 of the first m1 +m4 rows of W can contain non-zero

entries. Hence, the rows of W1 forms an orthonormal system. This shows that m1+m4 ≤ dimK.

We claim m1+m4 6= dimK. For otherwise, WS is an dimK×dimK matrix with orthonormal

rows. Hence, the columns of WS is also an orthonormal system. However, this is impossible as

the norm of the first column of WS is dimK/n < 1.

Therefore, we have shown that m1 +m4 < dimK with the existence of W . This contradicts

the assumption that dimK ≤ m1 +m4. Furthermore, the condition m2 ≤ m3 +m4 implies that

dimK ≤ m1 +m4 by Lemma 5(b).

As a corollary, we can prove Proposition 1 by counting. First of all, by Condition (c), X has

distinctive 2-simplexes. In order to show LX is not shift invariant w.r.t. LX1 , we want to prove

that they cannot have a common orthonormal eigenbasis. By Theorem 1, it suffices to show that

m2 ≤ m4 under the assumptions of Theorem 1. Let C be a connected union of 2-simplexes

contributing 1 to m2 in X . In C, there is at least one vertex vC connected to a 1-interior point

for otherwise, we can either add another 2-simplex to enlarge C or X contains no 1-interior

point, which contradicts Condition (b). Moreover, vC cannot be shared by another connected

union of 2-simplexes by Condition (a). In conclusion, C 7→ vC is an one-one map and hence

m2 ≤ m4, and Proposition 1 follows.
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