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Introduction

I start this dissertation in a not-so-formal way, to introduce, and at the same time
summarize the content of the next 128 pages. A careful examination of the title page
may have given some of it away: we will talk about lattices, d-lattices (we will get to
what they are soon) and their applications.

Lattices and d-lattices are mathematical structures that naturally arise when one
considers patterns in data. This is one of the main reasons behind their more recent
studies: the set of closed patterns from a binary dataset, which is particularly inter-
esting in data analysis, forms a lattice when ordered by set inclusion. If the dataset
is multidimensional, meaning that we deal with three or more dimensions, the corre-
sponding structure is a d-lattice, with d the dimension. This correspondence with data
analysis alone is enough of a motivation to study lattices and d-lattices. However, we
will see over the course of this dissertation that they can be entertaining and elegant
structures too.

If, on your way from the title page to the introduction, you ventured into the table
of contents, you may have noticed that this thesis is divided into three parts. The
first part, called Combinatorics, gathers some results on the cardinality of d-lattices
in the extremal case, and in the average case. The results are frightening: they can be
enormous. Having discussed the size of those structures, we enter the second part of
the dissertation, called Algorithms. There, we consider several approaches to bypass
the size of d-lattices. In the Applications chapters, we finally use lattices rather than
studying them, and try –once more– to generate only part of the lattices, in order to
reduce the number of objects that we need to handle.

What is less apparent is that this thesis stems from an industrial chair at the Cler-
mont Auvergne university. This working relationship between industries and univer-
sity is what allowed me to conduct this work on theoretical aspects of data analysis,
while maintaining a close interest on applications. The path that we will take from
Combinatorics to Applications is a good illustration of that relationship.

The diversity of the matters that are discussed in this dissertation is also the out-
come of the many encounters that punctuated my three years as a Ph.D. student. All
those encounters and opportunities to work on connected themes were made possi-
ble only because my advisor, Olivier Raynaud, encouraged me to do so during my
time as his student. I can definitely say that my experience of what research can be
–a collaboration between complementary brains– has been enriching, inspiring and
exciting.

1



2 CHAPTER 0. INTRODUCTION

We now present more in detail the content of each chapter.

First chapter The first chapter gives the mathematical preliminaries that reduce
the scope from discrete math to order theory, to lattice theory, and finally to formal
concept analysis. More specific definitions are given throughout the dissertation, in
order to keep this first chapter as short as possible.

Second chapter In the second chapter, we try to answer the question “How big can
a d-lattice get?”. We give an (almost) exact answer for 3-lattices, and some reflec-
tions for the general d case. This chapter presents joint works with Alexandre Bazin,
Laurent Beaudou and Khaveh Khorshkhah.

Third chapter In the third chapter, we are not concerned with the average case for
the cardinality of d-lattices, rather than the extremal case. We study the average size
of lattices and d-lattices under two models. We also study the average size of some
implicational bases. This work was triggered by Julien David’s visit at the LIMOS, and
was conducted partly with Alexandre Bazin (for the average number of implications).

Fourth chapter The fourth chapter, first of the Algorithms part, presents an algo-
rithm that allow to compute the elements of a d-lattice following a change in the data
that represents it. It allows to adapt to a change in the dataset (when a new entry is
added) without having to compute the whole new d-lattice from scratch. This work
finds its roots in the questions that were asked in the second chapter. We developed it
in collaboration with Alexandre Bazin and Olivier Raynaud.

Fifth chapter The fifth chapter carries the notions of reduction and introducer con-
cepts to the multidimensional case. This falls within the idea of trying to reduce the
curse of dimensionality that comes with d-lattices. This chapter stems from some
discussions with Alexandre Bazin.

Sixth chapter The sixth chapter marks the start of a more applied part. Our ob-
jective is not to try to reduce the complexity of some applications of lattices but to
actually do it. We present two approaches of conceptual navigation in different struc-
tures: the first explores introducer posets while the second navigates into a relational
lattice family. The question of the navigation was asked to me by two of the LIRMM’s
brightest stars, Jessie Carbonnel and Marianne Huchard, in cooperation with Alexan-
dre Bazin.

Seventh chapter Finally, the seventh and last chapter of the dissertation uses lattices
as a means of classification, in order to implicitly authenticate users in a system. We
present a classifier and some experiments on our case study: “are web-browsing logs
enough to recognize a user in a system?”. Spoiler alert, they are more than enough.
This works was conducted with Diyé Dia, Fabien Labernia, Yannick Loiseau and
Olivier Raynaud.



Chapter 1

Preliminaries

1.1 Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Formal Concept Analysis . . . . . . . . . . . . . . . . . . . . 6
1.4 Polyadic Concept Analysis . . . . . . . . . . . . . . . . . . . . 9

This chapter is devoted to the presentation of the mathematical objects manip-
ulated in this dissertation. In the next sections, the reader will find definitions and
notations related to sets, orders and more particularly lattices, in general and under
the framework of Formal Concept Analysis. We also introduce the generalisation of
Formal Concept Analysis to the d-dimensional case, called Polyadic Concept Analy-
sis.

1.1 Ordered Sets

We will start our definitions with a class of mathematical objects a bit more general. It
is noteworthy to mention that all the sets we manipulate in this dissertation are finite.

What we call a partially ordered set, or poset for short, is a set P , together with an
order relation ≤, that is reflexive, antisymmetric and transitive. It is partially ordered
because a pair of elements a and b of P can be either comparable, and then a ≤ b or
b ≤ a, or incomparable.

A good example is a genealogy tree. In a genealogy tree, two people are either
ancestors of one another, or are incomparable. We can (and will) say that everybody
can be considered as his own ancestor (for the sake of our example, this illustrates
the reflexivity). Someone cannot be ancestor to one of his ancestors, except himself
(antisymmetry). Your ancestors don’t stop at rank one: an ancestor of one of your
ancestors is also yours (transitivity).

Another example is the set of all positive integers N and the relation ≤ (less-or-
equal). In this case, no two elements are incomparable. We say that a poset where no
elements are incomparable forms a chain.

3



4 CHAPTER 1. PRELIMINARIES

a

b

cd e

f

Figure 1.1: A representation of P as
a directed acyclic graph, showing all
order relations between elements.

a

b

cd e

f

Figure 1.2: Hasse diagram of P ,
where only the transitive reduction has
been kept.

Here, we deal neither with genealogy nor with natural numbers. In most of the
cases (if not all), the order relation that we consider is the inclusion relation ⊆ on
subsets. As an example, {a, b, c} ⊆ {a, b, c, d}, but {a, b, c} and {a, b, d} are incom-
parable, because neither of them is included in the other.

The representation of posets is commonly done using a Hasse diagram 1. A Hasse
diagram allows one to embed an order in the plane by representing the elements of
P as vertices and the relations as arcs between them. In Figure 1.1, we show the
representation of all relations between elements of P . Figure 1.2 shows the Hasse
diagram for poset P . In this case, an edge exists between two elements a and b if
a ≤ b and there is no element c such that a ≤ c and c ≤ b.

In Figure 1.2, an upward arrow shows the direction of the order relation. We omit
this arrow when no confusion is likely to occur, and consider that all orders follow this
direction: the smallest element is on the bottom, and the greatest at the top, following
common sense.

1.2 Lattices
Lattices are a particular class of posets: they have all the properties of partial orders,
and some more.

Let (P,≤) be a poset and S a subset of P . An element x of P , such that for all y
in S, y ≤ x is called an upper bound of S. A subset of elements can have many upper
bounds. An element x of P , such that for all y in S, y ≤ x and there is no z such that
z is an upper bound of S and z ≤ x is called a least upper bound of S. Reciprocally,
we can define a lower bound of a subset S of L, and a greatest lower bound.

A lattice is a partially ordered set where every pair of elements has a unique great-
est lower bound (called meet) and a unique least upper bound (called join). Addition-
ally, when dealing with finite sets and finite lattices, a lattice has a unique least element
(that we call bottom, denoted ⊥) and a unique greatest element (top, >).

1Named after Helmut Hasse, a German mathematician of the 20th century.
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ab

cd e

Figure 1.3: An order that is not a lattice

>

b

cd e

⊥

Figure 1.4: A lattice.

⊥

a b c d

ab ac ad bc bd cd

abc abd acd bcd

>

Figure 1.5: A hypercube on 4 elements.

In Fig 1.3, b is an upper bound for elements d and e. Additionally, there is no
element “between” d and b, or e and b, so b is a least upper bound for d and e. We can
see that a is also a least upper bound for d and e. This order is not a lattice.

In Figure 1.4, one can check that every pair of elements has a unique least upper
bound. This is also true for the greatest lower bound. This order is a lattice.

Many classes of lattices are of great interest, however, one that shall be central for
this dissertation is the Boolean lattice. A Boolean lattice on a ground set of size n
is the lattice of all subsets of {1, . . . , n}, ordered by inclusion. Such a lattice is also
called a hypercube of dimension n 2 or a powerset of the universe E = {1, . . . , n},
and possibly denoted 2E . Let X and Y be subsets of {1, . . . , n}, then the lowest
upper bound is given by X ∪ Y and the greatest lower bound by X ∩ Y . A Boolean
lattice has 2n elements. Figure 1.5 shows a Boolean lattice on four elements.

2This denomination will not be used much in this dissertation, since we deal with multidimensional
datasets, and that a hypercube, be it on a ground set of ten thousand elements, is still of dimension two for
us.
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1.3 Formal Concept Analysis
Formal Concept Analysis (FCA) is a mathematical framework that revolves around
contexts as a condensed representation of lattices. This framework allows one to inject
the powerful mathematical machinery of lattice theory into data analysis. FCA has
been introduced in the 1980’s by a research team led by Rudolph Wille in Darmstadt.
It is based on previous work by Garrett Birkhoff on lattice theory [1] and by Marc
Barbut and Bernard Monjardet [2].

In this section, we give the basic definitions of FCA. For an informative book, the
reader can refer to [3].

Definition 1. A (formal) context is a triple (O,A,R) where O and A are finite sets
andR ⊆ O×A is a relation between them. We callO the set of (formal) objects and
A the set of (formal) attributes.

A formal context naturally has a representation as a crosstable, as shown in Fig-
ure 1.6. A pair (o, a) ∈ R correspond to a cross in cell (o, a) of the crosstable. Such
a pair is read “object o has attribute a”. Since many datasets can be represented as
binary relation such as the one in Figure 1.6, FCA finds natural applications in data
analysis.

a1 a2 a3 a4 a5

o1 × × ×
o2 × × ×
o3 × × ×
o4 × ×
o5 × × ×
o6 × × ×
o7 × × × ×

Figure 1.6: An example context with O = {o1, o2, o3, o4, o5, o6, o7} and A =
{a1, a2, a3, a4, a5}. A cross in a cell (o, a) is read “object a has attribute a”. A
maximal rectangle of crosses is highlighted.

To allow one to efficiently jump from a set of object to the set of attributes that
describes it, and vice versa, two derivation operators are defined. For a set O of
objects and a set A of attributes, they are defined as follows:

·′ : 2O 7→ 2A

O′ = {a ∈ A|∀o ∈ O, (o, a) ∈ R}

and
·′ : 2A 7→ 2O

A′ = {o ∈ O|∀a ∈ A, (o, a) ∈ R}

The ·′ derivation operator maps from a set of objects (resp. attributes) to the set
of attributes (resp. objects) that they share. The composition of the two derivation
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operators forms a Galois connection, and, as such, a closure operator. Depending on
which set the composition of operators is applied, we can have two closure operators:
·′′ : 2O 7→ 2O or ·′′ : 2A 7→ 2A.

Let O ⊆ O be a set of objects. A closure operator ·′′ is a function from 2O to 2O,
such thatO ⊆ O′′ (that is, ·′′ is extensive), ifX ⊆ O thenX ′′ ⊆ O′′ (·′′ is increasing)
and (O′′)′′ = O′′ (·′′ is idempotent). The same can be said for the closure operator on
sets of attributes. A set X such that X = X ′′ is said to be closed.

Definition 2. A pair (O,A) where O ⊆ O and A ⊆ A are closed, and A = O′ and
O = A′ is called a concept. O is called the extent of the concept while A is called the
intent of the concept.

A concept can be seen as a maximal rectangle of crosses in the crosstable that
represent a context, up to permutation on rows and columns. This point of view, while
not exactly formal, gives good insight and will be used thoroughly in this dissertation.
In Figure 1.6, the concept (o2o7, a2a4a5) is highlighted. We denote by T (C) the set
of all concepts of a context C.

We can order the concepts of T (C). Let (O1, A1) and (O2, A2) be concepts of
a context. We say that (O1, A1) is a subconcept of (O2, A2) (denoted (O1, A1) ≤
(O2, A2)) if O1 ⊆ O2. As the Galois connection that rise from the derivation is
antitone, this is equivalent to A2 ⊆ A1. The concept (O2, A2) is a superconcept of
(O1, A1) if O2 ⊇ O1 (A1 ⊇ A2).

The set of concepts from a context ordered by inclusion on the extents forms a
complete lattice called the concept lattice of the context. Additionally, every com-
plete lattice is the concept lattice of some context. Figure 1.7 (top) shows the concept
lattice corresponding to the example of Figure 1.6. One can check that the concepts
of Figure 1.7 (top) correspond to maximal boxes of incidence in Figure 1.6. The high-
lighted concept (o2o7, a2a4a5) corresponds to the highlighted concept of Figure 1.6.
The concepts that are located directly above (upper cover) and directly below (lower
cover) of a concept X form the conceptual neighborhood of X .

Two types of concepts can be emphasized. Let o be an object of a formal context.
Then, the concept (o′′, o′) is called an object-concept. It is also called the introducer
of o. We can state a similar definition for an attribute-concept, introducer of the
attribute a. For example, in Figure 1.7, the emphasised concept corresponds to the
concepts (o′′2 , o

′
2), and it introduces o2 in the sense that it is the least concept that

contains o2. In [3], such concepts are denoted respectively γ̃o for object-concepts and
µ̃a for attribute-concepts. A concept can be both an object-concept and an attribute-
concept. Concepts that are neither attribute-concepts nor object-concepts are called
plain-concepts. We show some applications of those particular introducer concepts in
Chapter 6.

The simplified representation of a concept lattice is a representation where the
labels of the concepts are limited. The label for a particular object appears only in the
smallest concept that contains it (its introducer). Reversely, the label for a particular
attribute appears only in the greatest concept that contains it (its introducer). The other
labels are inferred using the inheritance property. Figure 1.7 (bottom) corresponds to
the concept lattice from Figure 1.7 (top), with simplified labels. The concept named
Concept_10 has both labels empty. By applying the inheritance, we can retrieve
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(∅, a1a2a3a4a5)

(o7, a1a2a4a5)

(o6, a1a3a4) (o3, a1a2a3) (o1, a1a3a5) (o2o7, a2a4a5) (o5o7, a1a2a5)

(o4o6, a3a4)(o6o7, a1a4) (o1o3o6, a1a3) (o3o5o7, a1a2) (o1o5o7, a1a5) (o2o5o7, a2a5)

(o2o4o6o7, a4) (o1o3o4o6, a3) (o1o3o5o6o7, a1) (o2o3o5o7, a2) (o1o2o5o7, a5)

(o1o2o3o4o5o6o7, ∅)

Concept_0

∅

Concept_1

o7

Concept_2

o6

Concept_3

o3

Concept_4

o1

Concept_5

o2

Concept_6

o5

Concept_7

o4

Concept_8 Concept_9 Concept_10 Concept_11 Concept_12

Concept_13
a4

Concept_14
a3

Concept_15
a1

Concept_16
a2

Concept_17
a5

Concept_18
∅

Figure 1.7: Concept lattice corresponding to the example in Fig. 1.6 (top) and with
simplified labels (bottom).
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that Concept_10 is in fact the concept (o3o5o7, a1a2).
This representation allows a better reading into the concepts (with a clear sepa-

ration between the extent and the intent of a concept). It allows to see at first glance
which concepts are objects-concepts and attribute-concepts (by definition, the intro-
ducers have non-empty labels). The plain-concepts are literally plain.

1.4 Polyadic Concept Analysis

Polyadic Concept Analysis is a natural generalisation of FCA. It has been introduced
firstly by Lehmann and Wille [4, 5] in the triadic case, and then generalized by Vout-
sadakis [6].

In Polyadic Concept Analysis, the underlying relation is not binary anymore.
Polyadic Concept Analysis deals with d-ary relations between sets. More formally, a
d-context can be defined in the following way.

Definition 3. A d-context is a d + 1 tuple C = (S1, . . . ,Sd,R) where the Si, i ∈
{1, . . . , d} are sets called the dimensions andR is a d-ary relation between them.

A d-context can be represented as a |S1| × · · · × |Sd| crosstable, as shown in
Figure 1.8. For technical reasons, most of our examples figures will be drawn in two
or three dimensions.

S1

S2

S3

Figure 1.8: Visual representation of a 3-context without its crosses.

When needed, one can represent a d-context by separating the “slices” of the
crosstable. For instance, Fig 4.1 shows a 3-context which dimensions are Numbers,
Latin, and Greek.
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a b c a b c a b c
α × × × ×
β × × × ×
γ × × × ×

1 2 3

Figure 1.9: A 3-context C = (Numbers,Greek, Latin,R)
where Numbers = {1, 2, 3}, Greek = {α, β, γ} and
Latin = {a, b, c}. The relation R is the set of crosses, that is
{(1, α, a), (1, α, b), (1, β, a), (1, γ, a), (2, α, a), (2, β, a), (2, γ, a), (2, γ, c), (3, α, a),
(3, β, a), (3, β, b), (3, γ, c)}.

The following notations are borrowed from [6]. A d-context gives rise to numer-
ous 3 k-contexts, k ∈ {2, . . . , d}. Those k-contexts correspond to partitions π of
{1, . . . , d} in k subsets such that π = (π1, . . . , πk). The k-context corresponding to
π is then Cπ = (

∏
i∈π1

Si, . . . ,
∏
i∈πd

Si,Rπ), where (s(1), . . . , s(k)) ∈ Rπ if and
only if (s1, . . . , sd) ∈ R with si ∈ s(j) ⇔ i ∈ πj .

The contexts Cπ are essentially the context C flattened by merging dimensions
with the Cartesian product. A flattened version of our example context C is shown in
Figure 1.10. With every binary partition π comes the associated derivation operator
X 7→ X(π).

(1,a) (1,b) (1,c) (2,a) (2,b) (2,c) (3,a) (3,b) (3,c)
α × × × ×
β × × × ×
γ × × × ×

Figure 1.10: Let π = ({Greek}, {Number, Latin}). This figure represents the 2-
context Cπ .

Given a setD ⊆ {1, . . . , d} of dimensions,D = {1, . . . , d}\D. We denote by SD
the collection SD = 〈Sd | i ∈ D〉. Let Xi ⊆ Sd be a set of elements of dimension i,
we denote by XD = 〈Xi | i ∈ D〉 and xD the elements of

∏
i∈D Si. The |D|-context

associated with XD is CXD
= (SD, RXD

) such that ∀xD ∈
∏
i∈D Si, xD ∈ RXD

if
and only if xD∪D ∈ R.

The contexts CXD
correspond to the intersection of the flattened versions, for

given subsets on some dimensions, as shown in Figure 1.11.

a b c
α ×
β ×
γ

a b c
1 × ×
2 ×
3 ×

Figure 1.11: 2-Contexts C〈{1,3}〉 (left) and C〈{α}〉 (right).

3Stirling number of the second kind, or number of ways of arranging d dimensions into k slots.
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The pair setsD = {d1, d2} and the setsXd ⊆ Si, i ∈ D give rise to the derivation
operation X 7→ X(d1,d2,XD) on the 2-context C{d1,d2}XD

.
In the same way as in the 2 dimensional case, d-dimensional maximal boxes of

incidence have an important role in data mining. The d-dimensional maximal boxes of
incidence in a d-context are called d-concepts. We will usually denote d-dimensional
concepts as d-concepts, except when the dimension is clear from the context and we
will simply denote them concepts.

Definition 4. A d-concept of C = (S1, . . . ,Sd,R) is a d-tuple (X1, . . . , Xd) such
that

∏
i∈{1,...,d}Xi ⊆ R and, for all i ∈ {1, . . . , d}, there is no k ∈ Si \Xi such that

{k} ×
∏
j∈{1,...,d}\{i}Xj ⊆ R.

A d-concept of a d-context (S1, . . . ,Sd,R) is a d-tuple (X1, . . . , Xd) such that
Xi ⊆ Si for all i ∈ {1, . . . , d} and Xi = X

(i,{1,...,d}\{i})
{1,...,d}\{i} . As in the 2-dimensional

case, d-concepts can be defined with respect to the derivation operators. However,
their definition as maximal boxes of incidence is more convenient, and will be used
much more in this dissertation.

In the 2-dimensional case, 2-concepts can be ordered by the subset inclusion on
either objects or attributes. The structure that results from this ordering is a partial or-
der with some properties that makes it a lattice. In the d-dimensional case, d-concepts
can be ordered in a slighty different way.

Definition 5. P = (P,.1, . . . ,.d) is a d-ordered set if for A ∈ P and B ∈ P :

1. A ∼i B, ∀i ∈ {1, . . . , d} implies A = B (Uniqueness Condition)

2. A .i1 B, . . . , A .id−1
B implies B .id A (Antiordinal Dependency)

Here, the .i are quasi-orders, binary relations that are reflexive and transitive. For
the quasi-orders .i, i ∈ {1, . . . , d}, the d-concepts of a d-context C can be ordered in
the following way:

(A1, . . . , Ad) .i (B1, . . . , Bd)⇔ Ai ⊆ Bi

The equivalent relation ∼i, i ∈ {1, . . . , d} is defined in the same way:

(A1, . . . , An) ∼i (B1, . . . , Bn)⇔ Ai = Bi

We can see that concept lattices are in fact 2-lattices that respect both the unique-
ness condition and the antiordinal dependency. They are isomorphic to 1-lattices
because a concept is uniquely defined by its intent or its extent, and so the two orders
are dual.

From now on, we will use the notation {ab} to denote the set {a, b}.

In order to fully understand d-ordered sets, let us illustrate the definition with a
small digression about graphical representation. In 2 dimensions, for concept lattices,
the two orders (on the extent and on the intent) are dual and only one is usually
mentioned (the set of concepts ordered by inclusion on the extent, for example). Thus,
their representation is possible with Hasse diagrams. From dimension 3 and up, the
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Dimension 1

Dimension 2

Dimension 3

>

3

1
2

⊥

>

3

1

2
⊥

⊥
2

1

3

Figure 1.12: This represents a powerset 3-lattice. The red concept is (13, 13, 23).

representation of d-ordered sets is harder. For example, in dimension 3, no good (in
the sense that it allows to represent any 3-ordered set) representation exists. However
there is still a possible representation in the form of triadic diagrams.

Figure 1.12 shows an example of a triadic diagram, a representation of a 3-ordered
set. Let us explain how this diagram should be read. The white circles in the central
triangle are the concepts. The lines of the triangle represent the equivalent relation be-
tween concepts: the horizontal lines represent ∼1, the north-west to south-east lines
represent ∼2 and the south-west to north-east lines represent ∼3. Recall that two
concepts are equivalent with respect to∼i if they have the same coordinate on dimen-
sion i. This coordinate can be read by following the dotted line until the diagrams
outside the triangle. In [4], Lehmann and Wille call the external diagrams the extent
diagram, intent diagram and modi diagram depending on which dimension they rep-
resent. Here, to pursue the permutability of the dimensions further, we simply denote
them by dimension diagram for dimension 1, 2 or 3.

If we position ourselves on the red concept of Figure 1.12, we can follow the dot-
ted line up to the dimension 1 diagram and read its coordinate on the first dimension.
It is {13}. Following the same logic for dimension 2 and 3, we can see that the red
concept is (13, 12, 23). The concept on the south-east of the red concept is on the
same equivalent line. We know that its second dimension will be {12} too. When we
follow the lines to the dimension diagrams, we see that it is (23, 12, 13).

Here, every dimension diagram is a powerset on 3 elements. It is not always the
case, as the three dimension diagrams are not always isomorphic.

We mentioned earlier that this representation does not allow to draw any 3-ordered
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set (with straight lines). In [4], Lehmann and Wille explain this by saying that a vio-
lation of the so-called ‘Thomsen Conditions [7]’ and their ordinal generalisation [8]
may appear in triadic contexts.4.

After this digression, let us now dive into the particular joins that make a d-ordered
set a d-lattice. Let P = (P,.1, . . . ,.d) be a d-ordered set, j1, j2, . . . , jd−1 ∈
{1, . . . , d} be indexes and X1, X2, . . . , Xd−1 be some elements of P .

Definition 6. An element p ∈ P is called a (jd−1, . . . , j1)-bound of (Xd−1, . . . , X1)
if xi .ji p for all xi ∈ Xi, i ∈ {1, . . . , d − 1}. The set of all (jd−1, . . . , j1)-bounds
of (Xd−1, . . . , X1) is denoted by (Xd−1, . . . , X1)(jd−1,...,j1)

Such a bound l is called a (jd−1, . . . , j1)-limit of (Xd−1, . . . , X1) if b .jd l for
all (jd−1, . . . , j1)-bound b of (Xd−1, . . . , X1)(jd−1,...,j1).

This proposition is Proposition 4 from [6].

Proposition 7 ( [6, Proposition 4]). Let P = (P,.1, . . . ,.d) be an d-ordered set,
X1, . . . , Xd−1 ⊆ P elements of this set and {j1, . . . , jd} = {1, . . . , d} an index set.
Then there exists at most one (jd−1, . . . , j1)-limit l̄ of (Xd−1, . . . , X1) satisfying “l̄ is
the largest in .j2 among the largest limits in .j3 among . . . among the largest limits
in .jd−1

among the largest limits in .jd”.

Such a limit is called the (jd−1, . . . , j1)-join of (Xd−1, . . . , X1) and is denoted
∇jd−1,...,j1(Xd−1, . . . , X1). A complete d-lattice L = (L,.1, . . . ,.d) is a d-ordered
set in which all ∇jd−1,...,j1(Xd−1, . . . , X1)-joins exist, for all (Xd−1, . . . , X1) ⊆ L
and all {j1, . . . , jd} = {1, . . . , d}.

The basic theorem of Polyadic Concept Analysis [6] shows that the set of d-
concepts of a d-context together with the d quasi-orders induced by the inclusion
relation on the subsets of each dimensions forms a complete d-lattice. Additionally,
every complete d-lattice is isomorphic to the one formed by the d-concepts of a par-
ticular d-context. This makes Figure 1.12 a 3-lattice.

Conclusion
In this chapter we introduced the central notions of this thesis. We started from the
rather large notion of partially ordered sets, only to reduce it to the class of lattices.
The condensed representation of lattices into binary relations (Formal Concept Anal-
ysis) allows to study some aspects of lattices by studying the formal contexts, and
thus to work on a smaller object. From a binary to a d-ary relation, there was just a
step, that we took gladly, and introduced d-ordered sets, and from that, d-lattices.

Now that we have reduced the scope from “theoretical computer science” to order
theory, lattices and d-lattices, the reader has most of the necessary definitions and
knowledge to ensure a smooth reading of the rest of this dissertation. Of course, we
will meet some additional notions, and their definitions will be delivered in due time.

4I was unable to put my hands on those two books in order to learn more about that. If you have a copy,
I am most interested.
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Part I

Combinatorics
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“As I was going to St. Ives,
I met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits,
Kits, cats, sacks and wives,
How many were going to St. Ives?
POPULAR RHYME (XVII CENTURY)

“Seven old women are going to Rome,
Each of them has seven mules,
Each mule carries seven sacks,

Each sack contains seven loaves,
Each loaf has seven knives,

And each knife has seven sheaths.
What is the total number of things?

LEONARDO FIBONACCI (XIII CENTURY)

House 7
Cats 49
Mice 343
Wheat 2401
Hekat 16807

19607
RHIND PAPYRUS (XVII CENTURY BC)

Questions about combinations, permutations and counting things in general go
a long way back in history. In both eastern and western mathematics, one can find
many examples of combinatorial problems through the ages. The three examples
above show that some basic problems have even gone into the popular culture. These
three examples, and a more general survey about early ages combinatorics can be
found in [9].

When dealing with interesting structures such as lattices and d-lattices, one of
the first questions one can ask is about their cardinality. In this part, we study the
cardinality of d-lattices. More precisely, in the first part we focus on the maximal size
of a d-lattice, to try to answer the question “how big can a d-lattice be”. We study the
maximal size of a 3-lattice and give some insight about the general, d-dimensional
case. In the second chapter, we study the average case combinatorics of different
mathematical objects : implications between elements of a set, and d-concepts. Sure
d-lattices can get big, but fear not, the average case is quasi-nice.
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Chapter 2

The extremal case: how big can
a d-lattice get?

2.1 d-Lattices as Hypergraphs . . . . . . . . . . . . . . . . . . . . 19
2.1.1 d-Contexts as Hypergraphs . . . . . . . . . . . . . . . . 20
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2.2 An Upper Bound on the Size of a 3-Lattice . . . . . . . . . . . 22
2.2.1 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . 23

2.3 Powerset d-Lattices and Multiplicative Construction . . . . . 30
2.3.1 Powerset d-Lattice . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Multiplicative construction . . . . . . . . . . . . . . . . 31
2.3.3 A Lower Bound on the Maximal Size of a 3-Lattice . . . 34

In this chapter, we are interested in the number of concepts that arise in some
contexts. In particular, we are interested in the maximal number of 3-concepts that
can appear in 3-contexts. We give an upper bound and a lower bound on this number.
We also discuss powerset d-lattices and give some insight about their construction and
their number of concepts.

2.1 d-Lattices as Hypergraphs
In this section, we stray from d-lattices and their order properties to try and visualise
d-contexts as hypergraphs. The transformation from d-context to hypergraphs allows
us to handle simpler objects. The proofs that we present in this chapter are mostly
formalised in terms of hypergraphs. In order to have a smooth reading of this chapter,
we recall some definitions and properties of hypergraphs.

Hypergraphs are a generalization of graphs, where edges may have arity different
than 2. They have been formalized by Berge in the seventies [10]. Formally, a hyper-
graph H is a pair (V, E), where V is a set of vertices and E is a family of subsets of
V called hyperedges. We suppose that V =

⋃
E . From now on, we may use edge

19
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in place of hyperedge. The notations V (H) and E(H) denote respectively the set of
vertices and the set of edges of a hypergraphH. The order of a hypergraph is its num-
ber of vertices. When all the hyperedges of a hypergraph have the same arity k, we
call it a k-uniform hypergraph. Graphs are exactly the 2-uniform hypergraphs. When
the set of vertices of a hypergraph can be partitioned into k sets, such that every edge
intersects each part at most once, the hypergraph is called k-partite.

Let n, d and k be integers, such that 1 < d < n and 1 < k < n. LetH = (V, E) be
a hypergraph of order n. A k-clique or k-complete subgraph ofH is a set S of vertices
such that all the subsets of S of size k are edges. A d-partite complete subgraph of
a d-partite hypergraph is a subset S of its vertices such that every subset of S of size
d that has an element from each part forms an edge. A stable or independent set in a
hypergraph is a set S of vertices that contains no edge.

Of course, one can infer a definition for a maximal k-clique, maximal d-partite
complete subgraph or maximal stable by simply stating that no superset of the solution
has the same property.

A transversal ofH is a set of vertices that intersects every edge ofH. In the same
way as before, a minimal transversal is a transversal that does not contain another
transversal as one of its subsets. Formally, S ⊆ V is a transversal of H = (V, E) if
S ∩E 6= ∅,∀E ∈ E . It is a minimal transversal if there is no S′ ⊂ S such that S′ is a
transversal ofH.

Armed with those basic definitions, we can head into the more interesting part:
d-contexts as hypergraphs.

2.1.1 d-Contexts as Hypergraphs

Binary datasets, which include d-contexts, are essentially hypergraphs. The hyper-
graph HC associated with the d-context C = (S1, . . . ,Sd,R) is the hypergraph in
which each edge represents an element of the relation R (basically a cross of the
context).

Definition 8. The hypergraph associated with a d-context C is the hypergraphHC =
(V, E) where V =

⋃
i∈{1,...,d} Si and E = {{x1, . . . , xd} | (x1, . . . , xd) ∈ R}.

For example, in a 2-dimensional setting, a context is a bipartite graph, and its
concepts are maximal complete bipartite subgraphs (subgraphs in which every pair
of vertices that does not belong to the same part is an edge). In the 3-dimensional
case, a 3-context is a tripartite, 3-uniform hypergraph and its 3-concepts are then
complete tripartite sub-hypergraphs (subgraph in which every three vertices that does
not belong to the same part form an edge).

In Figure 2.1 and Figure 2.2 we show a 2-context and its associated 2-uniform
hypergraph. With C a d-context, the set of d-concepts of C is the set of maximal
complete d-partite subgraphs of the corresponding d-partite, d-uniform hypergraph.
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a b c d
1 × ×
2 × ×
3 × × ×
4 × × ×

Figure 2.1: A 2-context with 4 objects
and 4 attributes. The concept (134, ac) is
highlighted.

a

b

c

d

1

2

3

4

Figure 2.2: The 2-uniform hypergraph
that correspond to the 2-context on the
left. The maximal complete bipartite
subgraph (134, ac) is highlighted.

a b c d
1 × ×
2 × ×
3 × × ×
4 × × ×

Figure 2.3: A 2-context with 4 objects
and 4 attributes. The concept (134, ac) is
highlighted.

a

b

c

d

1

2

3

4

Figure 2.4: The complement hypergraph
of the 2-context on the left. Here, the set
{bd2} is a minimal transversal of the hy-
pergraph.

2.1.2 Changing paradigms: hypergraph transversals
In this section, we change paradigm and focus on hypergraph transversals.

We call complement hypergraph of a context C (and denote itHC) the hypergraph
obtained by creating a hyperedge for each cell that does not contain a cross in C.

Definition 9. The complement hypergraph HC of a d-context C is the hypergraph
HC = (V, E) where V =

⋃
i∈{1,...,d} Si and

E = {{x1, . . . , xd}|(x1, . . . , xd) ∈
∏

i∈{1,...,d}
Si \ R}.

In either the hypergraph associated with an d-context or its complement hyper-
graph, all edges have arity d (as they represent the coordinates of either the crosses or
the holes). They are also d-partite, since there is no edge containing two elements of
a same dimension. In Figure 2.3, we show a 2-context and its complement bipartite
graph (Figure 2.4).

A d-concept of HC is a subset S of the vertices of HC such that every d-tuple of
vertices from different parts forms an edge and that cannot be augmented with respect
to this property, otherwise known as a maximal complete d-partite subgraph. In HC ,
the same subset S of vertices (recall that HC and HC have the same vertex set) is
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a maximal stable set. Now, still in HC , S′ = V (HC) \ S is a minimal transversal.
Indeed, suppose that not all the edges are intersected by S′, then there is an edge E
that contains no element of S′. This implies that all the elements of E are in S, and
that is a contradiction with the fact that S is a stable set. Now suppose that S′ is not
minimal. There exists an element x of S′ such that S′\x is a transversal. This implies
that S ∪ {x} is a stable, that is a contradiction with the fact that S is maximal.

Proposition 10. Let (X1, . . . , Xd) be a d-concept of a d-context C. Then∏
i∈{1,...,d}

Si \
∏

i∈{1,...,d}
Xi

is a minimal transversal ofHC .

This property allows us to shift paradigm and consider minimal transversal in-
stead of concepts. In Figure 2.4, the set of vertices that corresponds to a concept is a
stable set, and its complement with respect to V (HC) is a minimal transversal ofHC .
Additionally, minimal transversals of hypergraphs are equivalent to other notions of
databases and data mining (see [11, 12] and references therein) and are well worth
studying even without this equivalence to concepts. This equivalence is well known
in formal concept analysis.

This shift allows us to explore some structural properties of hypergraphs in the
next section. Also, as a good friend of mine said: “better to search for sparse things:
transversals are clearer than cliques”.1

2.2 An Upper Bound on the Size of a 3-Lattice
In order to study the maximal size of a 3-lattice, we shift to minimal transversals in
tripartite 3-uniform hypergraphs. In this whole chapter, we denote by n the order
of the hypergraphs. This is different from the classical notation of formal concept
analysis, where n is usually the size of only one dimension. 2 Here, since we consider
the whole hypergraph, n =

∑
i∈{1,...,d} |Si|.

We are interested in the number of minimal transversals that arise in tripartite 3-
uniform hypergraphs. We denote by f3(n) the maximum number of minimal transver-
sal in such hypergraphs of order n.

By fixing the vertices taken in two of the three sets of vertices, there is only one
way to pick the remaining vertices. This is equivalent to the unicity of a 3-concept de-
scribed by two out of three components. A naive bound is then found by assuming that
all subsets from two of the three sets of vertices can appear in minimal transversals,
which gives an upper bound of 2n/3 × 2n/3 = 4n/3 ≈ 1.5874n minimal transversals.
That is a bold assumption, as we will show in this section that f3(n) is in fact bounded
by 1.5012n.

In this section, we prove the following theorem.

Theorem 11. For any integer n, f3(n) ≤ 1.5012n.
1Credit where credit is due, I think that this sentence originated from a discussion with Laurent Beaudou

and Jérémie Chalopin, in Lyon.
2See for example the commonplace statement that a 2-context has at most 2n concepts.
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2.2.1 Proof of Theorem 11

The proof of Theorem 11 relies on a technique introduced by Kullman [13] and used
on similar objects by Lonc and Truszczyński [14]. It resembles the approach used in
the analysis of exact exponential-time algorithms, measure and conquer by Fomin,
Grandoni and Kratsch [15].

In [14], the authors consider the class of hypergraphs of rank 3 (hypergraphs in
which the edge have arity at most 3). This class contains the tripartite 3-uniform
hypergraphs, but the general bound they obtained (1.6702n) is larger than the trivial
one in our specific case.

We define a rooted tree by forcing the presence or absence of some vertices in a
minimal transversal. In this tree, each internal node is a hypergraph from our family,
and each leaf corresponds to a minimal transversal, as shown in Figure 2.5. The next
step is to count the number of leaves in this tree. We do that by using the so-called
"τ -lemma" introduced by Kullmann [13, Lemma 8.2]. We associate a measure to
each hypergraph of our class. Then, using this measure, we label the edges of our
tree with a carefully chosen distance between the parent (hypergraph) and the child
(hypergraph).

The estimation of the number of leaves is then done by computing the maximal
τ , that depends on the measure for each hypergraph (for each inner node of the tree).
This constitutes the basis of the exponential. The exponent is the maximal distance
from the root of the tree to its leaves.

Let us dive into the more technical part. We mainly use the notion of condition,
introduced thereafter.

Definition 12. Given a set V of vertices, a condition on V is a pair (A+, A−) of
disjoint subsets of V . A condition is trivial ifA+∪A− = ∅, and non-trivial otherwise.

All the conditions that we handle are non-trivial. A condition amounts to fixing
a set of vertices to be part of the solution (the vertices in A+) and forbidding other
vertices (the vertices in A−).

A set T of vertices satisfies a condition (A+, A−) if A+ ⊆ T and T ∩A− = ∅.
Let H be a hypergraph and (A+, A−) a condition on the vertices of H. The hy-

pergraphH(A+,A−) is obtained fromH and (A+, A−) using the following procedure:

1. remove every edge that contains a vertex that is in A+ (as we take the vertices
of A+, this edge is now covered);

2. remove from every remaining edge the vertices that are in A− (we prohibit the
vertices from A−);

3. remove redundant edges (as they have the same transversals, we do not keep
the duplicates).

Vertices of H that appear in a condition (A+, A−) are not in V (H(A+,A−)) as
they are either removed from all the edges or all the edges that contained them have
disappeared.
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Lemma 13. LetH be a hypergraph, (A+, A−) a condition and T a set of vertices of
H. If T is a minimal transversal of H and T satisfies (A+, A−), then T \ A+ is a
minimal transversal ofH(A+,A−).

Proof. The proof is straightforward from the construction ofH(A+,A−).

This echoes the parent-child relation that can be found in the exact exponential-
time algorithm field [16].

A family of conditions is complete for the hypergraph H if the family is non-
empty, each condition in the family is non-trivial, and every transversal ofH satisfies
at least one condition of the family.

Let C be the class of tripartite hypergraphs in which edges have arity at most 3
and one of the parts is a minimal transversal. We call S the part that is a minimal
transversal. Tripartite 3-uniform hypergraphs belong to this class. Tripartite hyper-
graphs remain tripartite when vertices are removed from edges or edges are deleted.
Of course, those operations do not increase the arity of edges. As such, if an hyper-
graph H = (V, E) belongs to the class C and A = (A+, A−) is a condition on V
such that the edges that contain vertices of A− ∩ S also contain vertices of A+, then
HA is in C. From now on, we suppose that all the conditions we discuss respect this
property.

A hypergraph is non-trivial if it is not empty. A descendant function for C is a
function that assigns to each non-trivial hypergraph in C a complete family of condi-
tions. Let ρ be such a function.

We define a rooted labeled tree TH for all hypergraphs H in C. If H = ∅, then
we define TH to be a single node labeled with H. When H is non-trivial, we create
a node labeled H and make it the parent of all trees THA

for all A ∈ ρ(H). Since
C is closed under the operation of removing edges and removing vertices from edges
and since the number of vertices can only decrease when the transformation from H
toHA occurs, the inductive definition is valid. An example of such a tree is shown in
Figure 2.5.

Proposition 14. Let ρ be a descendant function for a class closed by removing edges
and removing vertices from edges. Then for all hypergraphs H in such a class, the
number of minimal transversals is bounded above by the number of leaves of TH.

Proof. When H = ∅, then it has only one transversal, the empty set. If the empty
set is an edge of H, then H has no transversals. In both cases, the assertion follows
directly from the definition of the tree. Let us assume now that H is non-trivial, and
that the assertion is true for all hypergraphs with fewer vertices thanH.

AsH is non-trivial, ρ is well defined forH and gives a complete family of condi-
tions. Let X be a minimal transversal of H. Then X satisfies at least one condition
A in ρ(H). From Lemma 13, we know that there is a minimal transversal Y of HA
such that Y ∪A+ = X . Then the number of minimal transversals ofH is at most the
sum of the number of minimal transversals in its children.

We now want to bound the number of leaves in TH for all hypergraphs in C. To
that end, we shall use Lemma 15 proved by Kullmann [13].

We denote by L(T ) the set of leaves of T and for a leaf `, we denote by P (`) the
set of edges on the path from the root to leaf `.
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({v1}, {v2, v3}) ({v2}, {v1, v3}) ({v3}, {v1, v2})

({v4, v7}, {v5, v6})
({v5}, {v4, v6, v7})({v6}, {v4, v5, v7})

Figure 2.5: Example of a tree constructed from some hypergraphs. Each leaf cor-
responds to a minimal transversal, so bounding the number of leaves gives a bound
on the number of minimal transversals. A transversal can be read by reading the red
labels (vertices of A+) going up. The tree is not fully drawn.

Lemma 15 ( [13, Lemma 8.1]). Consider a rooted tree T with an edge labeling w
with value in the interval [0, 1] such that for every internal node, the sum of the labels
on the edges from that node to its children is 1 (that is a transition probability).

Then,

|L(T )| ≤ max
`∈L(T )

 ∏
e∈P (`)

w(e)

−1

.

An example of how this lemma works can be found in Figure 2.6 and Figure 2.7.
We give two example of probability transitions and the bound that they imply for a
given tree. This shows that we want to find a probability transition that maximize the
less probable leaf in our tree.

In order to pick an adequate probability distribution, we use a measure. In our
context, a measure is a function that assigns to any hypergraph H in C a real number
µ(H) such that 0 ≤ µ(H) ≤ |V (H)|. Let H be such a hypergraph, A a condition on



26 CHAPTER 2. EXTREMAL COMBINATORICS

1
2

1
8

1
8

1
8

1
16

1
16

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure 2.6: The (most obvious) transition
probability given on the edges of this tree
gives us that the least probable leaf has
probability 1

16 . This implies that this tree
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Figure 2.7: This other probability gives
a more balanced probability for each
leaves. The least probable leaf has prob-
ability 1

6 , which ensures that the number
of leaves of this tree is bounded by 6.

its vertices and µ a measure. We define

∆(H,HA) = µ(H)− µ(HA).

Let H be a hypergraph in C and µ a measure. If, for every condition A in ρ(H),
µ(HA) ≤ µ(H), that we say then ρ is µ-compatible. In this case, there is a unique
positive real number τ ≥ 1 such that∑

A∈ρ(H)

τ−∆(H,HA) = 1. (2.1)

When τ ≥ 1,
∑
A∈ρ(H) τ

−∆(H,HA) is a strictly decreasing continuous function
of τ . For τ = 1, it is at least 1, since ρ(H) is not empty, and it tends to 0 when τ tends
to infinity.

A descendant function defined on a class C is µ-bounded by τ0 if, for every non-
trivial hypergraphH in C, τH ≤ τ0.

Now, we adapt the τ -lemma proven by Kullmann [13] to our formalism.

Theorem 16 (Kullmann [13]). Let µ be a measure and ρ a descendant function, both
defined on a class C of hypergraphs closed under the operation of removing edges
and removing vertices from edges. If ρ is µ-compatible and µ-bounded by τ0, then for
every hypergraphH in C,

|L(TH)| ≤ τh(TH)
0
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where h(TH) is the height of TH.

This theorem comes from Lemma 15. We find the worst possible branching and
assume that we apply it on every node on the path from the root to the leaves.

Lemma 17. There is a measure µ defined for every hypergraphH in C and a descen-
dant function ρ for C that is µ compatible and µ-bounded by 1.8393.

Proof. The general idea of this proof is that we give a complete family of conditions
for every non-trivial hypergraph in C.

Let H be a hypergraph belonging to the class C, i.e. a tripartite hypergraph that
contains a set S of vertices that is a minimal transversal such that no two vertices of
S belong to a same edge.

We use Theorem 16 to bound the number of leaves in the tree TH and thus the
number of minimal transversals in H. To do so, we define a descendant function ρ
that assigns a family of conditions to H depending on its structure. This takes the
form of a case analysis.

In each case, we consider a vertex a from S and its surroundings. The conditions
involve vertices from these surroundings and are sometimes strengthened to contain
a if and only if its presence in A+ or A− is implied by our hypotheses. This causes
every condition A to respect the property that A+ intersects all the edges containing
a vertex of A− ∩ S, which letsHA remain in the class C.

We set the measure µ(H) to

µ(H) = |V (H)| − αm(H)

where m(H) is the maximum number of pairwise disjoint 2-element edges in H
and α = 0.145785. The same measure is used in [14] (with a different α).3

In each case i and for every condition A, we find a bound kH,A such that

kH,A ≤ ∆(H,HA)

and a unique positive real number τi that satisfies the equation∑
A∈ρ(H)

τ
−kH,A

i = 1

We show that τi ≤ 1.8393 for all i. Let τ0 represent the quantity 1.8393.
As all our conditions involve at least one element from V (H) \ S, the height of

TH is bounded by |V (H)| − |S|. Hence, we have

|L(TH)| ≤ τ |V (H)|−|S|
0

In the remainder of the proof, we will write conditions as sets of expressions of
the form a and b where a means that a is in A+ and b means that b is in A−. For
example, the condition ({a, c}, {b, d, e}) will be denoted acbde. For a vertex v, we
denote by d2(v) the number of 2-edges that contain v, and by d3(v) the number of
3-edges that contain v.

3The α is defined experimentally in order to optimize the end result.
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Case 1: d2(a) ≥ 2: the hypergraph H contains a vertex a from S that belongs to
no 3-edge and at least two 2-edges ab and ac.

A minimal transversal of H either contains or does not contain b, and as such
{b, b} is a complete family of conditions for H. We can strengthen the conditions to
obtain {bc, bc, b}. Minimal transversals of H that do not contain b or c necessarily
contain a (as ab or ac would not be covered otherwise). Hence {bc, abc, ab} is a
complete family of conditions forH.

Let M be a maximum set of pairwise distinct 2-edges (matching) of H. By re-
moving k vertices we decrease the size of a maximum matching by at most k. Thus
we have

∆(H,HA) ≥

{
2− 2α for A ∈ {{bc}, {ab}}
3− 3α for A ∈ {{abc}}

. (2.2)

Equation (2.1) becomes 2τ2α−2
1 + τ3α−3

1 = 1. For our chosen α, we have that
τ1 ≤ τ0.

Case 2: d2(a) = 1: the hypergraphH contains a vertex a from S that belongs to a
unique 2-edge ab. We break down this case into two sub-cases depending on whether
or not a belongs to some 3-edges: d3(a) = 0 and d3(a) ≥ 1.

Since a is in a unique 2-edge, when one removes a and b, the size of a maximum
matching decreases at most by 1.

• d3(a) = 0: a is in a single 2-edge ab and no 3-edges. A minimal transversal of
H either contains or does not contain b. As such, {b, b} is a complete family of
conditions forH. As ab is the only edge containing a, a minimal transversal of
H that contains b cannot contain a. Similarly, every minimal transversal of H
that does not contain b necessarily contains a. This makes {ba, ab} a complete
family of conditions forH.

Let M be a maximum set of pairwise disjoint 2-edges of H. As ab is the only
edge containing a, b belongs to one of the edges in M . The hypergraphs Hba
and Hab contain all the edges in M except for the one containing b. Thus,
m(Hba) = m(Hab) ≥ m(H)−1. Since |V (Hba)| = |V (Hab)| ≤ |V (H)|−2,
we have

∆(H,HA) ≥ 2− α for A ∈ {{ba}, {ab}}. (2.3)

Equation (2.1) becomes 2τα−2
2.1 = 1. For our chosen α, we have that τ2.1 ≤ τ0.

• d3(a) ≥ 1: a is in a single 2-edge and in some 3-edges, one of which being
acd. We start with the conditions {bc, bdc, bcd, b}. Any minimal transversal of
H that does not contain either b or both c and d necessarily contains a. This
makes {bc, bdc, abcd, ab} a complete family of conditions forH. We obtain

∆(H,HA) ≥


2− 2α if A = {bc}
3− 3α if A = {bdc}
4− 3α if A = {abcd}
2− α if A = {ab}

. (2.4)
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Equation (2.1) becomes τ2α−2
2.2 + τ3α−3

2.2 + τ3α−4
2.2 + τα−2

2.2 = 1. For our chosen
α, we have that τ2.2 ≤ τ0.

Case 3: d2(a) = 0 and d3(a) ≥ 1: the hypergraph H contains a vertex a from S
that is in no 2-edge and in some 3-edges, one of which being abc. We start with the
conditions {b, cb, bc} and strengthen them to {b, cb, abc}. Since we do not have any
2-edge anymore, we cannot decrease the size of a maximum matching. We obtain

∆(H,HA) ≥


1 if A = {b}
2 if A = {cb}
3 if A = {abc}

. (2.5)

Equation (2.1) becomes τ−1
3 + τ−2

3 + τ−3
3 = 1. For our chosen α, we have that

τ3 ≤ τ0.

This proof ensures that there is a measure µ and a descendant function ρ for our
class of hypergraphs such that ρ is µ-bounded by 1.8393. This allows us to formulate
the following theorem.

Theorem 18. The number of minimal transversals in an hypergraph belonging to the
class C is less than 1.8393n−|S|.

Proof. Let µ and ρ be the measure and descendant function mentioned in Lemma 17.
The height h(TH) of the tree is bounded by n − |S| so a straightforward application
of Theorem 16 yields the result.

Theorem 11 is a straightforward corollary of Theorem 18.

Theorem 11. For any integer n,

f3(n) ≤ 1.83932n/3 ≤ 1.5012n.

Proof. The vertices of a tripartite 3-uniform hypergraph can be partitioned into three
minimal transversals so any of them can be S. The minimization of the bound is
achieved by using the biggest set which, in the worst case, has size n/3.

Theorem 19. Let C by a 3-context such that each dimension has size s. Then C has
at most 1.83932s ≈ 3.3831s 3-concepts.

This theorem refers to cubic 3-contexts, i.e. when the all the dimensions have
the same size. It is hard to generalise further the bound on the number of minimal
transversals since 3-context induce a given partition of vertices that may not max-
imise the number of minimal transversals. It still gives good insight on the maximum
number of 3-concepts, since the worst case context ought to have equilibrated dimen-
sions.
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2.3 Powerset d-Lattices and Multiplicative Construc-
tion

2.3.1 Powerset d-Lattice
In the 2-dimensional setting, what we call a powerset lattice on a ground set of size
s is the Boolean lattice of all the subsets of S = {1, . . . , s}, ordered by inclusion. It
has 2s elements. The corresponding 2-context is called a contranominal scale, and is
the context C = (S,S, 6=). In a Boolean concept lattice, all the parts of S are intents,
and extents. A concept has the form (S, S), with S a subset of S.

In terms of hypergraph transversals, the corresponding hypergraph is a perfect
matching (a set of disjoint edges), as shown in Figure 2.8.

. . .

Figure 2.8: A contranominal scale gives a perfect matching. One can build 2s minimal
transversals by choosing an element out of each of the s edges.

The equivalent in 3-dimensions would be a triadic powerset, represented by the
triadic contranominal scale (S,S,S,S3 \ {(a, a, a) | a ∈ S}) (Figure 2.9). The
3-lattice of all the 3-concepts induced by a triadic contranominal scale is called a
powerset 3-lattice (see Figure 1.12). The 3-concepts of a powerset 3-lattice are of the
form (S1, S2, S3) where S1 ∩ S2 ∩ S3 = ∅ and Si ∪ Sj = S, for every combination
of two dimensions.

1 2 3 1 2 3 1 2 3
1 × × × × × × × ×
2 × × × × × × × ×
3 × × × × × × × ×

1 2 3

Figure 2.9: The triadic contranominal scale on a ground set of size 3. This 3-context
has twenty-seven 3-concepts.

Proposition 20. A powerset 3-lattice on a ground set of size s has 3s 3-concepts.

Proof. The proof is straightforward by switching to minimal hypergraph transver-
sals. Let A = {a1, . . . , as}, B = {b1, . . . , bs} and C = {c1, . . . , cs} be sets. The
hypergraph H = (V, E) where V = A ∪ B ∪ C and E =

⋃
i∈S{ai, bi, ci} with

ai ∈ A, bi ∈ B, ci ∈ C is exactly the complement hypergraph for the triadic contra-
nominal scale.

All the 3-edges of H are disconnected. H has s 3-edges. For each minimal
transversal ofH, one can choose s times from 3 possibilities, hence 3s concepts.
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. . .

Figure 2.10: A triadic contranominal scale gives a set of disjoint 3-edges. One can
build 3s minimal transversals by choosing an element out of each of the s edges.

Figure 2.10 shows the complement hypergraph of a triadic contranominal scale.
Clearly, this proposition can be extended to the d-dimensional case.

Proposition 21. A powerset d-lattice on a ground set of size s has ds = 2s log d

d-concepts.

Proof. The proof is the same as before. We build a hypergraph H that is the com-
plement hypergraph of a d-adic contranominal scale. This hypergraph has s d-edges,
hence ds minimal transversals.

2.3.2 Multiplicative construction

In [3, Chapter 5.2], Ganter and Wille present some gluings, some ways of putting
together lattices by gluing them along some common substructures. They introduce
the vertical and horizontal sums, and the union of contexts. In this section, we present
another construction that allows to merge two d-contexts. This construction ensures
that merging two d-contexts with respectively N and N ′ concepts, builds a d-context
with N ×N ′ d-concepts.

Let C1 = (S1
1 , . . . , S

1
d ,R1) and C2 = (S2

1 , . . . ,S2
d ,R2) be two d-contexts such

that the S1
i , S

2
i are disjoint. The context C = (S1, . . . ,Sd,R) is constructed from the

contexts C1 and C2 in the following way.
The dimensions of C are the union of the dimensions of C1 and C2. The existing

crosses are conserved. New crosses are added in all the cells that borrow some of their
coordinates from different d-contexts. More formally,

Si = S1
i ∪ S2

i ,∀i ∈ {1, . . . , d}

and

R = R1 ∪R2 ∪ {(x1, . . . , xd) | ∃i, j ∈ {1, . . . , d} such that xi ∈ S1
i , xj ∈ S2

j }.

An example of this construction in two dimensions is shown in Figure 2.11, and
in three dimensions in Figure 2.12.

This construction allows to extend any pair of concepts where one comes from
each context into a new concept for the whole. This gives us the following proposition.
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S1
2 S2

2

S1
1

S2
1

C1

C2

Figure 2.11: The aforementioned construction amounts to merging the two 2-contexts
on a diagonal, while filling the rest with crosses. The grey areas represent this filling.

Proposition 22. Let C be a context built from C1 and C2 by the aforementioned pro-
cedure. Let X1 = (X1

1 , . . . , X
1
d) be a concept of C1, and X2 = (X2

1 , . . . , X
2
d) be a

concept of C2. Then X = (X1
1 ∪X2

1 , . . . , X
1
d ∪X2

d) is a concept of C.

Proof. We have to prove that (A) (X1
1 ∪ X2

1 , . . . , X
1
d ∪ X2

d) is indeed a box full
of crosses in R and (B) this box is maximal. We set Xi = X1

i ∪ X2
i , for all i ∈

{1, . . . , d}.

(A) We have to show that ∀x1 ∈ X1, . . . , xd ∈ Xn, (x1, . . . , xd) ∈ R. Either
x1 ∈ Sa1 , x2 ∈ Sa2 , . . . , xd ∈ Sad , and then we are either in Ra, with a being 1 or 2,
and the claim is true, or ∃i, j ∈ {1, . . . , d} such that xi ∈ S1

i , xj ∈ S2
j , so the crosses

that are inR1 andR2 form a concept, since they can be extended “on the size”.

(B) We have to show that for all i ∈ {1, . . . , d} there is no z ∈ Si \ Xi such that
z ×

∏
j∈{1,...,d}\iXj ⊆ R. Suppose that the concept can be extended on its first

component, that is ∃z ∈ S1, such that {z} ×
∏
j∈{2,...,d}Xj ⊆ R. In particular, if

z ∈ Sa1 , this means that {z}×
∏
j∈{2,...,d}X

a
1 ⊆ Ra. That is a contradiction with the

fact that (X1
1 , . . . , X

1
d) is a concept of Ca.

When stated in terms of hypergraph transversals in the complementary hypergraph
of new context C, Prop. 22 amounts to consider separately the minimal transversals
of HC1 and HC2 and combining the solutions. The previous proposition is re-stated
in these terms in the folowing proposition in a way that allows to glue k d-contexts.

Proposition 23. Let k be an integer, and for each i between 1 and k, let Hi be a
hypergraph of order ni with ti minimal transversals. Then the hypergraphH obtained
by disjoint union of the k hypergraphs is of order

∑k
i=1 ni and has

∏k
i=1 ti minimal

transversals. Moreover, if for every i, Hi is d-partite and d-uniform, then H is d-
partite and d-uniform.
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C1

C2

S1
1

S2
1

S1
2

S2
2

S1
3 S2

3

Figure 2.12: The two 3-contexts C1 and C2 are in a diagonal. Here, the crosses are
not represented, but all that is not in C1 or C2 is full of crosses.

Proof. It is sufficient to look at each connected component of ni vertices. The min-
imal transversals of the whole hypergraph are exactly the sets of vertices resulting
from the union of one minimal transversal from each connected component, hence
the number

∏k
i=1 ti. Clearly, the disjoint union of theHi, for all i between 1 and k is

still a d-partite d-uniform hypergraph.

Corollary 24. |T (C)| = |T (C1)| × |T (C2)|.

Since any pair of concepts forms a new concept, the total number of concepts
in the new context resulting from the construction is the product of the number of
concepts in each original context. Moreover, the sizes of the d-contexts are only
summed.

Remark 25. The 3-context (a, a, a, ∅), where a is a dimension consisting of only one
element and the relation is empty, has 3 concepts: (a, a, ∅), (a, ∅, a) and (∅, a, a).
When applying the construction mentioned above s times iteratively on this empty
context with itself, one builds a context with

3× 3× · · · × 3︸ ︷︷ ︸
s times

= 3s

3-concepts, that is exactly the triadic contranominal scale. When doing the same in
d-dimensions, one builds a d-adic contranominal scale.

Figure 2.13 shows another angle of the multiplicative construction that gives a
triadic contranominal scale.
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Figure 2.13: By adding new rows, layers and “columns” full of crosses on the side
of the 3-context and letting only the red cell be empty, the number of concepts is
multiplied by three. Such construction gives a triadic contranominal scale.

2.3.3 A Lower Bound on the Maximal Size of a 3-Lattice
For the sake of completeness, as we gave an upper bound on f3(n) it would be inter-
esting to have some attainable numbers. The construction of disjoint 3-edges shown
in Figure 2.10 gives 3s = 3n/3 ≈ 1.4422n minimal transversals. In this section, we
prove that f3(n) ≥ c1.4977n.

To prove this theorem, we use the multiplicative construction from the previous
section to build some contexts with a high number of concepts. A computer search on
small instances allows us to formulate the following claim.

Claim 26. There is a tripartite 3-uniform hypergraph on fifteen vertices with four
hundred and twenty-eight minimal transversals:

f3(15) ≥ 428.

This hypergraph is shown in Figure 2.14. We denote this hypergraph byH15.

a b c d e a b c d e a b c d e a b c d e a b c d e
1 × × × × ×
2 × × × × ×
3 × × × × ×
4 × × × × ×
5 × × × × ×

α β γ δ ε

Figure 2.14: Each cross represents a 3-edge. This hypergraph has four hundred and
twenty-eight minimal transversals.

Theorem 27. There exists a constant c such that for any integer n, f3(n) ≥ c1.4977n.

Proof. Let c = ( 1.4422
1.4977 )12. We observe that 428 > 1.497715. Now fix some integer

n that is a multiple of 3. There are two integers k and r such that n = 3(5k+ r) with
r between 0 and 4. By making k disjoint copies of H15 and then adding r disjoint
edges of arity 3, we obtain a hypergraph with 428k × 3r minimal transversals. Since
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428k ≥ 1.497715k and 3r ≥ 1.44223r, the number of minimal transversals is more
than 1.4977n−3r × 33r. Since r is between 0 and 4, ( 1.4422

1.4977 )3r is at least c.

Our extremal example H15, in terms of polyadic concept analysis, has this repre-
sentation (Figure 2.15): It has exactly one “hole” per row, column and layer and is, as
such, a solution to the 3-dimensional rook problem. It is in fact how we found it, and
the computer search only confirmed that it was a good intuition. The computer search
was not exhaustive and solutions with more 3-concepts might exist, even in 5× 5× 5
contexts.

a b c d e a b c d e a b c d e a b c d e a b c d e
1 × × × × × × × × × × × × × × × × × × × ×
2 × × × × × × × × × × × × × × × × × × × ×
3 × × × × × × × × × × × × × × × × × × × ×
4 × × × × × × × × × × × × × × × × × × × ×
5 × × × × × × × × × × × × × × × × × × × ×

α β γ δ ε

Figure 2.15: This is a 5× 5× 5 3-context. It has 428 3-concepts.

Conclusion
In this chapter, we studied some aspects of extremal combinatorics of d-lattices. We
chose a change of formalism in order to study our favorite objects under the scope of
hypergraphs. This allowed us to look for minimal transversals.

Some considerations of combinatorics on d-contexts become easier to see when
ported to transversals. It is the case for Theorem 27 for example. The multiplicative
construction that led to this theorem also admits a simpler proof (and construction)
when stated in terms of hypergraph transversals.

Although the proof for Theorem 11 is not that simple (it requires a small case
study and some analytics results from the litterature), the tools that allowed us to
reach that conclusion are tools from graph and hypergraph theory. Those tools are
also widely applied in enumeration, so we finally came full circle to some known
problems of Formal Concept Analysis.

The innocent question of “how many maximal boxes of dimension 3 can I fit into
a 3-dimensional context” was not that innocent after all. Its study led us to some
interesting proof technique (measure and conquer), and we reformulated this ques-
tion under various formalisms that underline the links between data science and more
theoretical aspects of discrete mathematics.

As it has been pointed out to me in July 2018 in Lyon by the mighty Stephan
Thomassé, it is almost a shame to present a result where you give an interval for a
value between 1.497n and 1.501n, without committing to the end so here it is.

Conjecture 28. f3(n) =
(

3
2

)n
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With lattices and d-lattices, the worst case, in terms of size, is exponential (in
the size of the dimensions). In the previous chapter, we investigated the worst case
scenario in 3-lattices. In this chapter, we choose another approach, and consider the
average case. The first part of the chapter is dedicated to implication bases as another
type of information contained in the context. We study the average size of a particular
implication base, under two different statistical models.

The second part of the chapter deals with the average number of concepts. First,
we deal with the average number of 2-concepts under the same two models as for the
implications. Then, we extend those results to the average number of d-dimensional
concepts.

3.1 Implicational Bases
Due to the fact that they are so widely used in practice, implications (association
rules that have a confidence of 100%) are one of the most studied notions in Formal

37
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Concept Analysis and data mining in general. An example of association rule can be
stated as follow: “men who buy diapers tend to buy beer”. The confidence of the rule
is the percentage of men who do buy beer as a reward for themselves when they buy
diapers. Implications have a stronger meaning, since it would be that “all men who
buy diaper buy beer”, a rule with confidence 100%.

In terms of Formal Concept Analysis, implications are defined as follows.

Definition 29. An implication (between attributes) is a pair of sets X,Y ⊆ A. It is
noted X → Y . An implication X → Y is said to hold in a context C if and only if
X ′ ⊆ Y ′.

In particular, the implication X → X always holds in a context. All the implica-
tions of the form X → Y when Y ⊆ X hold too. For these reasons, many implica-
tions are redundant. The number of implications that hold can be quite large [17]. It
is necessary to focus on the interesting ones.

Definition 30. A set of implications that allows for the derivation of all the implica-
tions that hold in a context, and only them, through the application of Armstrong’s
axioms is called a base.

We recall the Armstrong’s axioms [18]: for any sets of attributes X , Y and Z, if
Y ⊆ X then X → Y , X → Y then X ∪ Z → Y ∪ Z and if X → Y and Y → Z,
then X → Z.

The closure system induced by the implicational system given by a context (called
logical closure) is isomorphic to the one given by the concepts of this context.

3.1.1 Some Interesting Bases
One could ask himself, what is the smallest (cardinality wise) set of implications
that forms a base. The answer to this question was given by Guigues and Duquenne
in [19].

Definition 31 (Duquenne-Guigues Base). An attribute set P is a pseudo-intent if and
only if P 6= P ′′ and Q′′ ⊂ P for every pseudo-intent Q ⊂ P . The set of all the
implications P → P ′′ in which P is a pseudo-intent is called the Duquenne-Guigues
Base.

The Duquenne-Guigues Base, also called canonical base, or stem base has first
been introduced in [19] and is the smallest of all the bases. Here, we denote this base
as Σstem. The study of the complexity of enumeration of this base started in [17]
where it was shown that the size of the Duquenne-Guigues base can be exponential
in the size of the input, and that computing the size of the stem base is a #-P-hard
problem. Then, the problem of deciding whether a set of attributes is a pseudo-intent
was shown to be in Co-NP in [20]. It was then shown to be CoNP-complete in [21].
Then, the problem of enumerating pseudo-intents was shown minimal-transversals-
enumeration-hard in [22]. In this papier, it was also shown that the enumeration of
pseudo-intents is impossible with total polynomial time if P 6= NP . Finally, the
impossibility of enumerating pseudo-intents in reverse lexicographic order if P 6=
NP was shown in [23].
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a1 a2 a3 a4 a5

o1 × ×
o2 × × ×
o3 × × ×
o4 × ×
o5 × ×

Table 3.1: Toy context C.

While the Duquenne-Guigues Base is the smallest base altogether, the base of
proper premises, or Canonical Direct Base, noted here ΣProper, is the smallest base
for which the logical closure can be computed with a single pass. The Canonical Di-
rect Base was initially known under five independent definitions, shown to be equiv-
alent by Bertet and Monjardet in [24].

Proposition 32 (from [3]). P ⊆ A is a premise of a ∈ A if and only if (A\o′)∩P 6= ∅
holds for all o ∈ O such that (o, a) 6∈ R. P is a proper premise for a if and only if P
is minimal with respect to subset inclusion for this property.

Proposition 23 from [3] uses o ↙ a instead of (o, a) 6∈ R. It is a stronger
condition that involves a maximality condition that is not necessary here.

The set of proper premises of an attribute is equivalent to the minimal transversals
of a hypergraph induced from the context with the following proposition:

Proposition 33 (From [25]). P is a premise of a if and only if P is a hypergraph
transversal of Ha where

Ha = {A \ o′|o ∈ O, (o, a) 6∈ R}

The set of all proper premises of a is exactly the transversal hypergraph Tr(Ha).

To illustrate this link, we show the computation of the proper premises for some
attributes of context 3.1. We compute the hypergraph Ha for a1, a2 and a5. Let us
begin with attribute a1. We have to compute Ha1 = {A \ o′ |o ∈ O, (o, a1) 6∈ R}
and Tr(Ha1). In C, there is no cross for a1 in the rows o2, o3, o4 and o5. We have:

Ha1 = {{a1, a3}, {a1, a5}, {a1, a2, a3}, {a1, a2, a4}}

and
Tr(Ha1) = {{a1}, {a2, a3, a5}, {a3, a4, a5}

We have the premises for a1, which give the two implications a2a3a5 → a1 and
a3a4a5 → a1. {a1} is also a transversal of Ha1 but can be omitted here, since a→ a
is always true.

In the same way, we compute the hypergraph and its transversal hypergraph for
the other attributes. For example,

Ha2 = {{a1, a2, a3}, {a1, a2, a4}} and Tr(Ha2) = {{a1}, {a2}, {a3, a4}}
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Ha5 = {{a1, a5}, {a3, a4, a5}} and Tr(Ha5) = {{a5}, {a1, a3}, {a1, a4}}

The set of all proper premises of ai is exactly the transversal hypergraph Tr(Hai),
∀i ∈ {1, . . . , 5}, to which we remove the trivial transversals (ai is always a transver-
sal for Hai ). The base of proper premises for context C is the union of the proper
premises for each attribute:

ΣProper(C) =
⋃
a∈A

Tr(Ha) \ {a}

It should be noted that the complexity of the enumeration problem was shown to
be quasi-polynomial in the seminal paper by Fredman and Khachyian [26].

3.2 Average Size of Implication Bases
In [25], Ryssel, Distel and Borchmann provided expected numbers of proper premises
and concept intents. Their approach, like the one in [27], uses the Erdős-Rényi
model [28] to generate random hypergraphs. However, in [25], the probability for
each vertex to appear in a hyperedge is a fixed 0.5 (by definition of the model) whereas
the approach presented in [27] consider this probability as a variable of the problem
and is thus more general.

3.2.1 Single parameter model
In the following, we assume all sets to be finite, and that |O| is polynomial in |A|.
We call p the probability that an object o has an attribute a. An object having an
attribute is independent from other attributes and objects. We denote by q = 1−p the
probability that (o, a) 6∈ R. The probability of an attribute that is not a appearing in a
hyperedge of Ha is also q.

The hypergraphs that we consider in the following are sub-hypergraphs constru-
cted from Ha by removing a and removing all the hyperedges that contained only
a. The transversal hypergraph of a hypergraph constructed in this way is exactly
Tr(Ha) \ {a}. This allows us to consider the transversal hypergraph without adding
a as a premise for a. The average number of hyperedges of this hypergraph is m =
|O| × q × (1 − p|A|−1). Indeed, there is one hyperedge for each object o for which
(o, a) 6∈ R and there exists an attribute a2 such that (o, a2) 6∈ R (otherwise the
edge would be empty and, as such, removed). We note n the number of vertices of
Ha \ {a}. At most all attributes appear in Ha \ {a}, except a, so n ≤ |A| − 1.

Proposition 34 (Reformulated from [27]). In a random hypergraph with m edges
and n vertices, with m = βnα, β > 0 and α > 0 and a probability p that a vertex
appears in an edge, there exists a positive constant c such that the average number of
minimal transversals is

O

(
n
d(α)log 1

q
m+c ln lnm

)
with q = 1− p, d(α) = 1 if α ≤ 1 and d(α) = (α+1)2

4α otherwise.



3.2. AVERAGE SIZE OF IMPLICATION BASES 41

Proposition 34 bounds the average number of minimal transversals in a hyper-
graph where the number of edges is polynomial in the number of vertices. In [27], the
authors also prove that this quantity is quasi-polynomial.

From Proposition 34 we straightforwardly deduce the following property for the
number of proper premises for an attribute.

Proposition 35. In a random context with |A| attributes, |O| objects and probability
p that (o, a) ∈ R , the number of proper premises for an attribute is on average:

O

(
(|A| − 1)

(
d(α)log 1

p
(|O|×(q×(1−p|A|−1)))+c ln ln(|O|×(q×(1−p|A|−1)))

))
and is quasi-polynomial in the number of objects.

Proposition 35 states that the number of proper premises of an attribute is on
average quasi-polynomial in the number of objects in a context where the number of
objects is polynomial in the number of attributes.

As attributes can share proper premises, |ΣProper| is on average less than

|A| ×O

(
(|A| − 1)

(
d(α)log 1

p
(|O|×q×(1−p|A|−1)))+c ln ln(|O|×q×(1−p|A|−1)))

))
.

Since |Σstem| ≤ |ΣProper|, Proposition 35 immediately yields the following
corollary:

Corollary 36. The average number of pseudo-intents in a context where the number
of objects is polynomial in the number of attributes is less than or equal to:

|A| ×O

(
(|A| − 1)

(
d(α)log 1

p
(|O|×q×(1−p|A|−1))+c ln ln(|O|×q×(1−p|A|−1))

))
Corollary 36 states that in a context where the number of object is polynomial in

the number of attributes, the number of pseudo-intents is on average at most quasi-
polynomial.

3.2.2 Almost sure lower bound for the number of proper premises
An almost sure lower bound is a bound that is true with probability close to 1. In [27],
the authors give an almost sure lower bound for the number of minimal transversals.

Proposition 37 (Reformulated from [27]). In a random hypergraph with m edges
and n vertices, and a probability p that a vertex appears in an edge, the number of
minimal transversals is almost surely greater than

LMT = n
log 1

q
m+O(ln lnm)

Proposition 37 states that in a random context with probability p that a given object
has a given attribute, one can expect at least LMT proper premises for each attribute.
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Proposition 38. In a random context with |A| attributes, |O| objects and probability
q that a couple (o, a) 6∈ R, the size of ΣProper is almost surely greater than

|A| × (|A| − 1)

(
log 1

p
(|O|×q×(1−p|A|−1))+O(ln ln(|O|×q×(1−p|A|−1)))

)

As Prop 38 states a lower bound on the number of proper premises, no bound on
the number of pseudo-intents can be obtained this way.

3.2.3 Multiparametric model

In this section we consider a multiparametric model that fits real life data better. In
this model, each attribute j has a probability pj of appearing in the description of a
given object. All the attributes are not equiprobable.

We consider a context with m objects and n attributes. The set of attributes is
partitioned into 3 subsets:

• The set U contains the attributes that appear in a lot of objects’ descriptions
(ubiquitous attributes). For all attributes u ∈ U we have qu = 1−pu < x

m with
x a fixed constant.

• The set R represents rare events, i.e. attributes that rarely appear. For all at-
tributes r ∈ R, we have that pr = 1− e− 1

lnn tends to 0.

• The set F = A \ (U ∪R) of other attributes.

Proposition 39 (Reformulated from theorem 3 [27]). In the multiparametric model,
we have:

• If |F ∪ R| = O(ln |A|), then the size of the base of proper premises is on
average at most polynomial.

• If |R| = O((ln |A|)c), then the size of the base of proper premises is on average
at most quasi-polynomial.

• If |R| = Θ(|A|), then the size of the base of proper premises is on average at
most exponential on |R|.1

Proposition 39 states that when most of the attributes are common (that is, are in
the set U ), |ΣProper| is on average at most polynomial. When there is a logarithmic
quantity of rare attributes (attributes in R), |ΣProper| is on average at most quasi-
polynomial (in the number of objects). When most of the attributes are rare events,
|ΣProper| is on average at most exponential.

As in the single parameter model, Proposition 39 also yields the same bounds on
the number of pseudo-intents.

1We say that a function is in Θ(n) if, when n gets large enough, the function is at least k1 × n and at
most k2 × n for some constants k1 and k2.
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3.3 d-Dimensional Implications
Until recently (as of 2018), implications in d-contexts were not formally defined.
In [29], Ganter and Obiedkov discuss the matter of implications in triadic contexts,
however, the paper does not contain a formal proof that the set of implication they
introduce allows to build the corresponding 3-lattice. In [30], Bazin introduced an
implicational base that allows to build the corresponding d-lattice. It is this implica-
tional base that we study here.

In this section, we introduce some notations necessary to understand this d-dimen-
sional implication base and explain its computation. From this, we estimate the aver-
age number of d-implications.

Definition 40. Let k be a dimension of a d-context (S1, . . . ,Sd,R). Let k = {1, . . . ,
d}\{k} be the set of all the other dimensions. Then C(k,k) is the 2-context (Sk,

∏
i∈k

Si,Rk) whereRk = {(sk, s2) | (sk,
∏
i∈k si) ∈ R}.

a b c a b c a b c
α × × × ×
β × × × ×
γ × × × × ×

1 2 3
(a,1) (a,2) (a,3) (b,1) (b,2) (b,3) (c,1) (c,2) (c,3)

α × × × ×
β × × × ×
γ × × × × ×

Figure 3.1: An example of a 3-context C = (Numbers,Greek, Latin,R) and
C(Greek,{Latin,Numbers}).

Figure 3.1 shows an example of a 3-context and a 2-context constructed by fixing a
dimension and applying a Cartesian product to the others. This illustrates the previous
definition.

Theorem 41 ( [30, Theorem 1]). Let C = (S1, . . . ,Sd,R) be a d-context and k a
dimension. An implication base of C(k,k) is an implication base of C.

Theorem 41 states that from the implications of C(k,k), one can derive a struc-
ture that is isomorphic to the d-lattice of d-context C. Since any 2-dimensional base
works, the base of Proper Premises gives an upper bound on the minimal number of
d-implications. The Duquenne-Guigues base, while still the smallest base for context
C(k,k) might not be the smallest for C altogether.

3.3.1 Single Parameter Model
In this case, the model is straightforwardly the same as in Section 3.2.1. For each cell
in the d-dimensional context, there is a probability p that there is a cross. We denote
by q = 1− p the probability that this cell is empty.
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For a given attribute a of the form (s2, . . . , sd) (remember that the attributes are
elements of the Cartesian product on d−1 dimensions), we study Ha. The probability
that another attribute appears in an edge of Ha is q. The comparison with the 2-
dimensional case stops here, as the number of vertices and edges is radically different
in this case.

The hypergraph Ha has a vertex for every element of the Cartesian product of the
dimensions. Let k be the dimension that serves as pivot in Ck. Then Ha has at most
n =

∏
i∈{1,...,d}\{k} |Si| vertices. The hypergraph Ha has an edge for every element

of the pivot dimension k that does not have a but has at least another element. The
average number of edges is then m = |Sk| × q × (1− pn).

The number of vertices of this hypergraph is big (
∏
i∈{1,...,d}\{k} |Si| where k is

the dimension chosen as pivot) while its number of edges is small. The average num-
ber of implications in the d-dimensional implication base defined in [30] is then the
average number of minimal transversals given by Proposition 37, using the number of
vertices and the number of edges that we calculated.

It is not clear what the multiparameter model would be like in d dimensions. For
this reason, we do not include an analysis of the average number of implications in
this case.

3.4 Average Number of concepts

Given a context, counting the number of concepts is as hard as enumerating them,
as it has been shown by Kuznetsov in [31]. The average number of concepts has
been studied more than the average number of implications. Some papers exist on
the 2-dimensional case: in 2005 by Lhote, Rioult and Soulet [32, 33], in 2009 by
Emilion and Lévy [34] for the probability of a concept, by Klimushkin, Obiedkov
and Roth [35] and more recently by Bodini, David and Bazin, in a paper not yet
published [36].

3.4.1 2-Dimensions

This results comes from [36]. We consider a context with n objects and m attributes,
such that n and m are polynomially related, that follows the same single parameter
model described above (each cell has a probability p of having a cross, independently
from any other cell).

Let us start by computing the probability that a pair (X1, X2) such that X1 is a
set of objects of size x and X2 is a set of attributes of size y is a concept. We want
X1 × X2 to be full of crosses. The probability that this happens is pxy . For the
maximality of (X1, X2) to be true, we want a 0 in each line and each column outside
the concept (Figure 3.2). For the columns, we obtain the probability (1 − py)n−x

and for the lines (1 − px)m−y . All in all, we obtain that the probability that a pair
objects-attributes (X1, X2) is a concept is:

P((X1, X2) is a concept) = pxy × (1− py)n−x × (1− px)m−y.
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S2

(size m)

S1

(size n)

X1

(size x)

X2

(size y)

1

Figure 3.2: For (X1, X2) to be a concept, the area formed by X1 × X2 has to be
full of ones. Moreover, the grey areas have to have at least one zero per line (resp.
column) to ensure the maximality of the concept. What happens in the white area in
the South-East is irrelevant.

Summing on the possible sizes for X1 and X2, we obtain that the average number
of concepts of a context C that has n objects and m attributes and follows the single
parameter model follows the following formula:

E(C) =

n∑
x=1

((
n

x

) m∑
y=1

(
m

y

)
pxy × (1− py)n−x × (1− px)m−y

)
.

After rewriting the expression, the authors of [36] conclude that this quantity is
quasi-polynomial.

In the following, we extend this result to the multiparameter models. We are
interested in a context C = (S1,S2,R) where S1 has size n, S2 has size m and for
each element a of S2, we have pa the probability that there is a cross in each cell of
this column. We start by computing the probability that a pair of sets (X1, X2) where
X1 comes from S1 and X2 from S2 is a concept. We denote the sizes of X1 and X2

by x and y, respectively.
We want X1 × X2 to be full of crosses. The probability that this happens is∏

`∈X2
px` . For the maximality of (X1, X2) to be true, we want a 0 in each line

and each column outside the concept. For the columns, we obtain the probability∏
a∈S2\X2

(1 − pxa) and for the lines (1 −
∏
`∈X2

p`)
n−x. All in all, we obtain that
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the probability that a pair objects-attributes (X1, X2) is a concept is:

P((X1, X2) is a concept) =
∏
`∈X2

px` × (1−
∏
`∈X2

p`)
n−x ×

∏
a∈S2\X2

(1− pxa).

Summing on all the possibilities forX1 andX2, we obtain that the average number
of concepts of a context C that has a set of object S1 of size n and a set of attributes
S2 of size m, and follows the multi parameter models follows the following formula:

∑
X1∈2S1

 ∑
X2∈2S2

∏
`∈X2

px` × (1−
∏
`∈X2

p`)
n−x ×

∏
a∈S2\X2

(1− pxa)

 .

3.4.2 d-Dimensions
The subject of the average number of d-concepts in a d-context has not been studied
before. Here, we take on the single parameter model in order to use the same approach
as before on a d-dimensional setting.

We consider a d-context (S1, . . . ,Sd,R) where the dimensions have si elements,
for i in {1, . . . , d}. Each cell has a probability p of having a cross. We start by
computing the probability that a tuple of d sets (X1, . . . , Xd), where each Xi comes
from Si, and each set has a size xi, is a concept.

We wantX1×· · ·×Xd to be full of crosses. The associated probability is p
∏d

i=1 xi .
Then, for each dimension, we want to have at least one 0 in the “shadow” of our
concept (see Figure 3.3). For this, we find

∏d
i=1(1− p

∏d
j=1,j 6=i xj )si−xi . Combining

all this gives us

P((X1, . . . , Xd) is a concept ) = p
∏d

i=1 xi ×
d∏
i=1

(1− p
∏d

j=1,j 6=iXj)
si−xi

for the probability that a d-tuple is a d-concept. To ease notation in the following part,
we will denote this probability P((x1, . . . , xd)).

Summing on all the possibilities for the Xi, we obtain

s1∑
x1=1

((
s1

x1

) s2∑
x2=1

((
s2

x2

)
· · ·

sd∑
xd=1

((
sd
xd

)
(P ((x1, . . . , xd)))

)
. . .

))

for the average number of concepts of a d-context (S1, . . . ,Sd,R) where the dimen-
sions have size si and that follows the single parameter model.

Discussion and conclusion
The topic of randomly generated contexts is a central issue in Formal Concept Anal-
ysis, most notably when they are used to compare algorithm performances. Since
2002, where a paper by Kuznetsov and Obiedkov [37] compares some concept lattice
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1

S1

size s1

S2

size s2

S3

size s3

Figure 3.3: For (X1, X2, X3) to be a concept, the area formed by X1 × X2 × X3

has to be full of ones. Moreover, the grey area have to have at least one zero per line
(resp. column or layer) to ensure the maximality of the concept. What happens in the
white area in the rest of the cube is irrelevant.

building algorithms theoretically and experimentally, few experimental studies have
been made. In [38], Borchmann and Hanika investigate the Stegosaurus phenomenon
that arise when generating random contexts, where the number of pseudo-intents is
correlated with the number of concepts.

In order to remove the problems raised by experiments on random contexts, in [39]
Ganter discusses how to randomly and uniformly generate closure systems on up to
seven elements.

In [40], the authors introduce a tool to generate less biased random contexts,
avoiding repetition while maintaining a given density (inside an interval defined with
some user-fixed lower and upper bounds), for any number of elements. This tools
does not, however, ensure uniformity.

The multiparameter model that we used in this chapter allows for random contexts
that are more similar to real life datasets [27], in the sense that it unties attributes from
one another. We do not have any theoretical proof whether the multiparameter model
avoids the Stegosaurus phenomenon. This issue is worth more investigation, both
theoretical and experimental.
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While the first part of this dissertation revolves around combinatorial problems on
d-lattices, the second is dedicated to more algorithmic matters. We are not interested
anymore in the cardinality of our structures, but rather in properties about those that
allow to perform some operations on them.

In Chapter 4, we present an algorithm that enumerate the d-concepts of a d-
context. As there is an important link between d-lattices and data mining problems,
enumerating the elements of a d-lattice is an interesting problem. Due to the combi-
natorics of d-lattices, presented in the first part of the dissertation, we know that in the
worst case the number of d-concepts is a huge drawback in applications. As a step
to tackle this drawback, we developped an incremental algorithm. Such an algorithm
starts from an incomplete solution and computes the complete solution. Our algo-
rithm starts with a set of d-concepts from a d-context, and consider that the d-context
is augmented with a new element on a dimension. As the saying goes, “when you’re
tired of counting, you can always enumerate”.2

As enumerating all the d-concepts is still a hard task, we propose to shrink the
structure. Chapter 5 shows another approach to takle the limitations induced by the
size of d-lattices. Introducer concepts are the smallest concepts (with respect to a
given order) that have a given element. They are well known and studied in the 2-
dimensional case, as AOC-posets or Galois Sub-herarchies. They find a number of
applications, most notably in software engineering (they were first mentioned in this
context, and are still used, in particular in Chapter 6), and data mining. We define
their equivalent in d-dimensions, the introducer d-concepts, and characterise their
structure as a d-ordered set. We also generalise the notion of reduction in context to
the d-dimensional case.

2This is not really a saying, but it is suitable here.



52



Chapter 4

When tired of counting, we can
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In this chapter, we introduce an algorithm that computes the set of d-concepts
of a d-context. This algorithm takes as input a set of d-concepts from a d-context
and a new element to be added to this d-context, and outputs the set of updated d-
concepts. This incremental setup allows to update the set of concepts when the d-
context changes, instead of computing again all the d-concepts from scratch. This
solution allows to reduce the impact of the combinatorial explosion induced by the
multidimensionality (sometimes called curse of dimensionality).

4.1 Motivation

Given a d-context, a classical task in Polyadic Concept Analysis is to enumerate all
its d-concepts. This task finds applications in a lot of fields involving data. This
is the classical enumeration problem addressed in its 2-dimensional form by Formal
Concept Analysis with algorithms such as NEXT CLOSURE and we tackle it in Sec-
tion 4.4, with Algorithm 2.

53



54 CHAPTER 4. ENUMERATION ALGORITHM FOR N -CONCEPTS

d-CONCEPT ENUMERATION

Input: A d-context C.
Output: T (C), the set of all the d-concepts of C.

In order to solve the d-CONCEPT ENUMERATION problem, we iteratively solve
another problem, the d-CONCEPT AUGMENTATION problem, using Algorithm 1
(Section 4.4.2).

d-CONCEPT AUGMENTATION

Input: The set of d-concepts of a d-context CS and a (d− 1)-context C′.
Output: The set of all the d-concepts of the new d-context built from CS and C′.

This is the enumeration problem corresponding to the case when a d-context is
augmented with a new entry and we want to revise its set of d-concepts instead of
computing it from scratch.

Existing methods

In [41], Loïc Cerf, Jérémy Besson, Céline Robardet and Jean-François Boulicaut
present DATA PEELER, an algorithm that solves the d-CONCEPT ENUMERATION
problem. They allow one to extract closed d-itemsets (essentially d-concepts) that
satisfy some constraints. DATA PEELER uses a binary exploration technique, by di-
viding the search space and building a tree. It is, to our knowledge, the first algorithm
that allows for the enumeration of closed d-itemsets. It does not, however, admit an
incremental version.

In [42], Makhalova and Nourine introduce an algorithm to compute d-dimensional
concepts. They present a recursive algorithm that fixes d−2 dimensions of a d-context
and uses known algorithms to compute the 2-concepts of the contexts resulting from
fixing d − 2 dimensions. The recursive ascent merges concepts to go back to the
original dimension. Their approach is incremental in the sense that they solve sub-
problems of decreasing dimensions. They do not propose an explicit algorithm to
solve the d-CONCEPT AUGMENTATION problem. They use pairwise comparison of
(k − 1)-concepts to compute the k-concepts, with k varying from 2 to d. We avoid
this pitfall by using what we call projection, which is defined in the next section.

4.2 Specific notations and projections
From now on, the first component (resp. dimension) of a d-concept (resp. d-context)
will arbitrarily be called the height of the concept/context while all the other compo-
nents/dimensions will be called the width. 1 For example, the 3-concept (123, a, αβ)
from Figure 4.1 has height 123 and width (a, αβ). A d-concept (X1, . . . , Xd) has
height X1 and width (X2, . . . , Xd).

1While the height is usually a measure and as such, a number, we consider that the height of a con-
cept/context is a set.
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a b c a b c a b c
α × × × ×
β × × × ×
γ × × × × ×

1 2 3

Figure 4.1: A 3-context C = (Numbers, Latin,Greek,R) where Numbers =
{1, 2, 3}, Latin = {a, b, c} and Greek = {α, β, γ}.

Let CS = (S1, . . . ,Sd,RS) be a d-context and C′ = (S2, . . . ,Sd,R′) be a
(d − 1)-context on the same last d − 1 dimensions as CS . The d-context CS ⊕ C′ =
(S1 ∪ {e},S2, . . . ,Sd,RS ∪ {(e, x2, . . . , xd) | (x2, . . . , xd) ∈ R′}) is constructed
by “gluing” C′ on the bottom of CS , as illustrated in Figure 4.2. The element e, that is
not in S1, serves as the identifier of C′ on the first dimension (the one that C′ lacks).
Figure 4.3 depicts another way to visualise the gluing of C′ on CS .

S1

S2

S3

CS

e C′

Figure 4.2: The 2-context C ′ = (S2,S3,R′) corresponding to a new entry is glued on
the bottom of the 3-context CS = (S1,S2,S3,RS) by the⊕ operation. Since this new
entry does not have a first dimension corresponding to S1, we use e as its identifier.

Let H be a subset of the first dimension. The set HH(CS) is the set of all the
d-concepts of CS of height H , i.e. all the d-concepts of the form (H,X2, . . . , Xd) in
T (CS).

An important notion to be manipulated in the algorithm is the projection of a d-
concept onto a (d− 1)-context.

Definition 42. Let CS be a d-context and let C′ be a (d−1)-context whose dimensions
are the width of CS . Let X = (X1, . . . , Xd) be a d-concept of CS . The projection of
X onto C′, denoted by PC′(X), is the setR′ ∩

∏
i∈{2,...,d}Xi.

Let X be a set of d-concepts. Then the projection of X onto C′ is the union of the
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a b c a b c a b c a b c
α × × × × × ×
β × × × × × ×
γ × × × × × × ×

1 2 3 e

C

C′CS

Figure 4.3: By gluing the 2-context C′ corresponding to e under our example CS , we
obtain a new 3-context C. Now that the entry e has been added, we have a d-context
that may not have the same d-concepts.

projections of all the concepts in X , i.e. PC′(X ) =
⋃
X∈X PC′(X). A projection is a

set of tuples that represent crosses.

Remark 43. Let X be a set of d-concepts. Then (S2, . . . ,Sd,PC′(X )) is a (d − 1)-
context.

Figure 4.4 shows the projection of a d-concept of CS (grey area in CS) onto a
(d − 1)-context C′. The crosses that are in R′ and in the width of the d-concept are
shaded as well. Let us illustrate the projection by giving an example. We project the
3-concepts found in Figure 4.1 onto the 2-context induced by e in Figure 4.3:

PC′((12, a, αβγ)) = {(a, α)} PC′((1, ab, α)) = {(a, α), (b, α)}
PC′((2, ac, γ)) = {(c, γ)} PC′((123, a, αβ)) = {(a, α)}
PC′((3, ab, β)) = {(b, β)} PC′((3, b, βγ)) = {(b, β), (b, γ)}
PC′((3, bc, γ)) = {(b, γ), (c, γ)} PC′((23, c, γ)) = {(c, γ)},
PC′((∅, abc, αβγ)) = R′ PC′((123, ∅, αβγ)) = ∅
PC′((123, abc, ∅)) = ∅

4.3 Important properties
Let C = CS⊕C ′ be a d-context. Our goal is to solve the problems d-CONCEPT ENU-
MERATION and d-CONCEPT AUGMENTATION. This section focuses on properties
needed to solve d-CONCEPT AUGMENTATION, that is to compute T (C) from T (CS)
and C′.

Proposition 44. Let X = (X1, . . . , Xd) be a d-concept of C. Then, there exists a
d-concept XS = (X1 \ {e}, Y2, . . . , Yd) in CS with Xi ⊆ Yi, ∀i ∈ {2, . . . , d}.

Proof. If X = (X1, . . . , Xd) is a d-concept of C, then it is a d-box full of crosses in
C. As such, removing e from X’s height does not change the fact that X1 \ {e} ×
X2×· · ·×Xd is a d-box full of crosses in C. Consequently,X1 \{e}×X2×· · ·×Xd

is also a d-box full of crosses in CS .
Moreover, in C, (X1 \ {e}, X2, . . . , Xd) is maximal (inclusion-wise) for the

height, as (X1, X2, . . . , Xd) would not be a d-concept of C otherwise. As (X1 \
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S1 CS

e C′

Figure 4.4: The (d−1)-context (S2, . . . , Sd,PC′(X)) is constructed from C′ by keep-
ing only the crosses “under” X .

{e}, X2, . . . , Xd) is not necessarily maximal on the other dimensions, it can be ex-
tended into a d-concept XS = (X1 \ {e}, Y2, . . . , Yd) of CS with bigger width.

Proposition 44 states that, for each d-concept C of C, there is at least one d-
concept in CS that has a smaller (inclusion-wise) height and a bigger (inclusion-wise)
width than C. Figure 4.5 shows a graphical example of Proposition 44.

In C (Figure 4.3), let us consider the 3-concept (123e, a, α). Proposition 44 states
that there is a concept in CS (Figure 4.1) that has height 123, and a larger width. In
our example, (123, a, αβ) is such a concept.

Corollary 45. Let X = (X1, . . . , Xd) be a d-concept of C. If e 6∈ X1, then X is a
concept in CS .

Clearly, when e is not contained in the height of a d-concept of C, then this d-
concept is untouched by the changes in the d-context, and as such was already a
maximal box of crosses in the d-context CS .

In Figure 4.3, (12, a, αβγ) is a concept of both CS and C that is unchanged by the
addition of the new layer.

Using projection, we want to link the d-concepts of CS to C′. To this end, we
introduce the following property, where the d-concepts of CS are grouped by height.

Proposition 46. Let X = (X1, . . . , Xd) be a d-concept of C, with e in its height.
Then (X2, . . . , Xd) is a (d − 1)-concept of the (d − 1)-context resulting from the
projection PC′(HX1\{e}(CS)) of all the concepts of CS of height X1 \ {e} onto C′.

Proof. Since X = (X1, . . . , Xd) is a d-concept of C, we know that (X2, . . . , Xd) is
a (d − 1)-box of crosses in C′. Moreover, from Proposition 44 we know that there is
a d-concept Y of CS with its width larger than (X2, . . . , Xd).
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e

Figure 4.5: Let X = (X1, . . . , Xd) be the dotted 3-concept of C that contains e in its
height. Then there exist a 3-concept of CS of height X1 \ {e}. This concept has a
wider width than X . Such a concept is drawn in this figure.

This ensures that (X2, . . . , Xd) is a (d − 1)-box full of crosses in the (d − 1)-
context CP = (S2, . . . ,Sd,PC′(HX1\{e}(CS))) resulting from the projection of all
the d-concepts of C of height X1 \ {e}.

For the sake of contradiction, let us now suppose that (X2, . . . , Xd) is not max-
imal and thus not a (d − 1)-concept of CP . Without loss of generality, suppose that
it can be extended on its first component: there is a k in S2 such that X2 ∪ {k} ×
· · · ×Xd is a (d− 1)-box full of crosses in CP . This implies that CS has a d-concept
(X1 \ {e}, Z2, . . . , Zd) where k is in Z2 and Xi ⊆ Zi for all i ∈ {2, . . . , d}. If this
is the case, then X can be extended and is not a d-concept, which contradicts our
premise. Thus, (X2, . . . , Xd) is a (d− 1)-concept of CP .

Proposition 46 states that the width of the new d-concepts of heightH∪{e} can be
found among the (d−1)-concepts of the (d−1)-context resulting from the projections
on C′ of all the d-concepts of height H .

Let us go back once more to our example in Figure 4.3. In C, (3e, b, βγ) is a
concept that contains e (which is our new element here) in its height. Proposition 46
states that the width of this 3-concept can be found among the 2-concepts of the 2-
context resulting from the projection of all 3-concept of height H = {3} onto C′.

For example, let us computeH{3}(CS) = {(3, ab, β), (3, b, βγ), (3, bc, γ)}. Then
the projection of these concepts onto C′ is PC′(H{3}(CS)) = {(b, β), (b, γ), (c, γ)}.
The context induced by this projection is shown in Figure 4.6. The 2-concept (b, βγ)
is indeed a 2-concept of the 2-context induced by the projection of the 3-concepts of
height 3, and (3e, b, βγ) is a concept of C.

Proposition 47. Let (X2, . . . , Xd) be a (d− 1)-concept of the (d− 1)-context

(S2, . . . ,Sd,PC′(HH(CS)))
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a b c
α
β ×
γ × ×

e

Figure 4.6: The 2-context (Greek, Latin,PC′(H{3}(CS))), with the identifier e.

resulting from the projection of all the d-concepts of height H of CS onto C′. Then
there is a d-concept (Y,X2, . . . , Xd) of C with H ∪ {e} ⊆ Y .

Proof. If (X2, . . . , Xd) is a (d − 1)-concept of CH = (S2, . . . ,Sd,PC′(HH(CS))),
then there are d-concepts of the form (H,Y2, . . . , Yd) in CS , with Xi ⊆ Yi, for all
i ∈ {2, . . . , d}. If, because the height is not maximal, (H ∪ {e}, X2, . . . , Xd) is not
a concept of C, then there exist d-concepts of the form (Z,Z2, . . . , Zd) in CS with
H ⊂ Z and Xi ⊆ Zi for all i ∈ {2, . . . , d}. Thus, X2 × · · · ×Xd is a (d − 1)-box
full of crosses in the context that results from the projection PC′(HZ(CS)).

If (X2, . . . , Xd) is not a (d − 1)-concept of CZ = (S2, . . . ,Sd,PC′(HZ(CS))),
then it means that it can be extended. Without loss of generality, let us say that it can
be extended on its first component, i.e. there exists a k such that X2∪{k}× · · ·×Xd

is a subset of PC′(HZ(CS)). This implies that Z×{k}×X3×· · ·×Xd is inRS and
thusH×{k}×X3×· · ·×Xd is inRS . This contradicts the fact that (X2, . . . , Xd) is
a (d − 1)-concept of CH , as it could be extended on k. Consequently, (X2, . . . , Xd)
must be a (d− 1)-concept of CZ .

To conclude, if (X2, . . . , Xd) is a (d−1)-concept of CH , then either (H∪{e}, X2,
. . . , Xd) is a concept of C or (X2, . . . , Xd) is a (d−1)-concept of the (d−1)-context
(S2, . . . , Sd,PC′(HZ(CS))) for some superset Z of H . Eventually, because S1 is
finite, a maximal height M such that (M ∪ {e}, X2, . . . Xd) is a concept of C is
reached.

Proposition 47 implies that every (d − 1)-concept that appears in the (d − 1)-
context resulting from the projection of a given height on C′ will eventually be the
width of some d-concept.

Let us consider our running example, shown in Figure 4.3, and the 2-context of
Figure 4.6 resulting from the projection of all the 3-concepts of height {3} of the
running example. The 2-concepts in Figure 4.6 are (b, βγ) and (bc, γ). Both those
2-concepts give rise to new 3-concepts in the augmented context: (3e, b, βγ) and
(3e, bc, γ).

From Propositions 44, 46 and 47, we can infer how to compute the new d-concepts
that contain {e} in their height by projecting the "old" d-concepts.

Remark 48. Some d-concepts from T (CS) will not be in T (C): ifX = (X1, . . . , Xd)
is a d-concept of CS and PC′(X) = X2 × · · · ×Xd, then Proposition 46 implies that
(X1 ∪ {e}, X2 . . . , Xd) will be a d-concept of C and replace X .
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4.4 Presentation of the algorithm

In this section, we present an algorithm to address the d-CONCEPT AUGMENTATION
problem (Section 4.4.1), and then an algorithm to address the d-CONCEPT ENUMER-
ATION problem (Section 4.4.2). The second algorithm relies on the first to compute
the set of all the d-concepts of a d-context progressively.

4.4.1 d-CONCEPT AUGMENTATION

Propositions 44, 46 and 47 give us the tools necessary to compute T (C) from T (CS)
and C′. We use them in Algorithm 1.

First, for every height H that corresponds to at least one d-concept of CS , we
computeHH(CS), and the (d−1)-context (S2, . . . ,Sd,PC′(HH(CS))) resulting from
the projection ofHH(CS) onto C′.

For each such (d − 1)-context, we compute its set of (d − 1)-concepts. These
(d− 1)-concepts are then transformed into d-concept candidates by adding {e} to the
height that generated the (d − 1)-context from which they originate. Finally, these
candidates are checked for maximality on the height and added to the new set of d-
concepts if needed. The removal of d-concepts that are no longer maximal occurs
during the computation of their projection on C′ (cf Remark 48).

Algorithm 1: d-CONCEPT AUGMENTATION(T (CS), C′)
Input: T (CS) the set of d-concepts of d-context CS and C′ a (d− 1)-context.
Output: T (C) the set of d-concept of C = CS ⊕ C′.

1 R← T (CS)
2 foreach different heights H do
3 P ← ∅
4 foreach X = (H,X2, . . . , Xd) inHH(CS) do
5 P ← P ∪ PC′(X)

6 if PC′(X) =
∏d

2 Xi then
7 R← R \ {X}

8 Compute T (S2, . . . ,Sd, P )
9 foreach (Y2, . . . , Yd) ∈ T (S2, . . . ,Sd, P ) do

10 if (H ∪ {e}, Y2, . . . , Yd) is maximal on its height then
11 R← R ∪ (H ∪ {e}, Y2, . . . , Yd)

12 return R

Proposition 49. Algorithm 1 ends and returns each d-concept of C exactly once.

Proof. The dimensions of the contexts are finite. The set of d-concepts of a d-context
is finite too and so is the number of possible heights. The algorithm goes through
each height and projects each d-concept once. Thus, Algorithm 1 ends.
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Proposition 46 ensures that every d-concept (H∪{e}, X2, . . . , Xd) is found when
the loop processes the height H so every d-concept is found at least once. As a d-
concept (H ∪ {e}, X2, . . . , Xd) can only be generated for the height H , every d-
concept is added to the output only once.

4.4.2 d-CONCEPT ENUMERATION

In this section, our goal is to solve the d-CONCEPT ENUMERATION problem, using
the approach of Algorithm 1. We recall the problem.

d-CONCEPT ENUMERATION

Input: A d-context C.
Output: All the d-concepts of C.

Computing the d-concepts of a d-context from scratch can be done with Algo-
rithm 1 by starting with a single d-concept (∅,S2, . . . , Sd) and adding the layers
corresponding to S1 one by one, using in Algorithm 2. As per Remark 52, adding
a layer cannot reduce the number of concepts. Computing T (C) from scratch is in
O (|S1| ×Q) where Q is the complexity of Algorithm 1.

To ease the notations, we introduce the following definition.

Definition 50. Let C = (S1, . . . ,Sd,R) be a d-context. Let s be an element of S1. The
(d−1)-context Cs = (S2, . . . , Sd,Rs) whereRs = {(x2, . . . , xd) | (s, x2, . . . , xd) ∈
R} is obtained by keeping only the layer corresponding to s.

Algorithm 2: d-CONCEPT ENUMERATION(C)
Input: C = (S1, . . . ,Sd,R) a d-context.
Output: T (C) the set of d-concepts of C.

1 if d = 1 then
2 C ← {R}
3 else
4 C ← (∅, S2, . . . , Sd)
5 foreach s ∈ S1 do
6 C ←d-CONCEPT AUGMENTATION(C, Cs)

7 return C

Algorithm 2 can be used to compute the (d − 1)-concepts of the projections in
Algorithm 1, which makes it recursive. The recursion ends when reaching 1-contexts
(S1, R) which have single 1-concepts that can be computed in O(|S1|).
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4.4.3 Complexity
Since the output of our problem may be exponential in the size of its input, no poly-
nomial algorithm2 can exist. In order to study the complexity of Algorithm 1, we will
use the notion of output-polynomiality.

Definition 51. An algorithm is said to be output-polynomial if, for all input I , its time
complexity is in O((|I|+ |O|)k) where |O| is the size of the output and k a constant.

It is clear that we need to study the running time of our algorithm not only in terms
of size of the input, but also in relation to the size of the output. We recall the input
and output of d-CONCEPT AUGMENTATION.

d-CONCEPT AUGMENTATION

Input: The set of d-concepts of a d-context CS and a (d− 1)-context C′.
Output: T (CS ⊕ C′), the set of all the d-concepts of the d-context CS ⊕ C′.

At the time of writing, the only known bound for the number of d-concepts of a
d-context (S1, . . . ,Sd,R) is

∏
i∈{1,...,d}\{k} 2|Si| with k = argmaxk∈{1,...,d}|Sk|.

This comes from the fact that a d-concept is uniquely described by d − 1 of its com-
ponents. By supposing that all the subsets of the d−1 smallest dimensions can appear
in d-concepts (and that is a bold assumption), we have our bound. 3

The size of a d-context (S1, . . . ,Sd,R) is
∏
i∈{1,...,d} |Si|. Our input is a set of

d-concepts and a (d − 1)-context. We denote by I the input. It’s size is bounded by∏
i∈{1,...,d}\{k} 2|Si| +

∏
i∈{2,...,d} |Si|. Since our output O is a set of d-concepts, its

size is bounded by
∏
i∈{1,...,d}\{k} 2|Si|.

Remark 52. It is to be noted that |T (CS)| ≤ |T (C)|.

Proof. If a d-concept exists in CS , it is either broken into multiple “thinner” concepts,
kept intact or extended with the new element in C.

The number of heights is bounded by 2|S1| and |T (CS)|. As per Proposition 47,
a d-concept appearing in a (d − 1)-context resulting from the projection of the d-
concepts of a given height is always the width of some d-concept in C. Such a d-
concept cannot appear in more than min

(
2|S1|, T (CS)

)
(d − 1)-contexts. From this

follows that the algorithm will not handle more than min
(
2|S1|, T (CS)

)
× |T (C) \

T (CS)| (d− 1)-concepts.
Computing HH(CS) for every possible height – i.e. grouping the d-concepts by

height – can be done using a sorting algorithm in O (|T (CS)| × log |T (CS)|). The
projection of a d-concept (X1, . . . , Xd) onto C′ is computed in

∏
i∈{2,...,d} |Xi|.

As mentioned previously, the (d − 1)-concepts manipulated by the algorithm are
the width of some d-concepts, hence they are maximal. As such, only the height has
to be tested for maximality in order to decide whether a d-box is a d-concept. The
complexity of doing so depends on the information available. If we know CS (and not

2In the traditional sense: polynomial in the size of the input.
3That’s a debatable statement seeing the result in Chapter 2.
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only its set of d-concepts), deciding whether (H,X2, . . . , Xd) is a d-concept can be
done inO (|S1 \H| × |X2| × · · · ×Xd) by checking whether a layer that is not inH
contains the width. If we do not have CS , we can use the fact that (H,X2, . . . , Xd)
is a d-concept if and only if H \ {e} is the greatest height (inclusion-wise) for which
(X2, . . . , Xd) is a (d − 1)-concept in PC′(HH\{e}(CS)). By sorting the concepts by
their heights into any linear order such that Hi ≤ Hj ⇔ Hj ⊆ Hi, a new d-concept
will be created as soon as its width is found for the first time.

We can check whether a concept (X2, . . . , Xd) is already the width of a concept
of greater height by storing old concepts in a hashtable structure. Hashtable structures
can ensure an average O(1) cost for the look-up of a concept. However, as the uni-
verse of keys is 2|X2|+···+|Xd|, and the number of stored concept big, in order to keep
the load factor under a certain threshold, one would need to allocateO(2|X2|+···+|Xd|)
in memory space.

Proposition 53. The algorithm that computes T (C) from T (CS) and C′ is in

O

|T (CS)| ×

log |T (CS)|+
∏

i∈{2,...,d}
|Si|

+

Sort and project the d-concepts of CS

L× (K + |T (C) \ T (CS)| ×M)


Processing for each height

with L the number of possible height (bounded by 2|S1| and |T (CS)|), K the com-
plexity of computing the (d− 1)-concepts of a (d− 1)-context and M the complexity
of checking whether a d-box is a d-concept.

Proposition 54. Algorithm 1 enumerates the elements of T (Ce) in output-polynomial
time.

Proof. The number of possible heights is less than min(2|S1|, T (CS)). Checking
whether a d-box is a d-concept can be done in time polynomial in the size of the
d-context. From Proposition 47, we know that the number of (d − 1)-concepts in a
(d− 1)-context resulting from projections on C′ is bounded by the size of the output.

As such, computing the d-concepts of T (C) from those of T (CS) and C′ can be
done in output-polynomial time if and only if computing the (d − 1)-concepts of
the projections can also be done in output-polynomial time. Computing all the 1-
concepts of a 1-context can be done in polynomial time so computing the 2-concepts
of a 2-context can be done in output-polynomial time. Recursively, we can see that
computing the d-concepts of a d-context can also be done in output-polynomial time.
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Conclusion
In this chapter we introduced a new incremental algorithm to retrieve the d-concepts
of a d-context. It does not allow for the computation order structure of the subjacent
d-lattice. As new d-concepts are constructed by adding a single element to the height
of another concept, it is easy to retrieve a spanning tree of the covering relation of the
partial order induced by the inclusion on the first dimension. The same cannot be said
for all the other dimensions. While applications requiring only the spanning tree of
≤1 are likely to exist, it would be interesting to be able to compute the whole lattice,
either by modifying Algorithm 1 or through a new approach.

Though not the first incremental algorithm for this problem, Algorithm 1 is the
first not to require the initial context (CS). Even so, it would be interesting to ex-
perimentally compare the running time of these algorithms, both on real life datasets
and generated datasets. We hope that this algorithm may round off the algorithmic
toolbox available in d dimensions.
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As we have seen in the previous chapters, one of the limitations of polyadic con-
cept analysis lies in the combinatorial explosion that comes with d-contexts and d-
lattices. This limitation forces us to consider approaches that avoid the combinatorial
explosion. For example, in Chapter 4, we introduced an incremental algorithm in or-
der to be able to speed-up the computation of d-concepts following an addition to a
d-dimensional dataset.

Another way around the combinatorial limitation due to d-dimensional data con-
siders not the algorithms that extract d-concepts, but the dataset itself. This approach
is called reduction. It is well known in the 2-dimensional case and has been extended
to triadic datasets by Rudolph, Sǎcǎrea and Troancǎ [43]. Here, we extend the notion
of reduction to the d-dimensional case. Reduction in a dataset allows one to get rid
of some “useless” entries. Here, the word useless is between quotes and in italics be-
cause the value of an entry of the dataset is different depending on the goal one wants
to achieve. When only the underlying lattice is of importance, reduction changes
nothing, and reducible entries are, indeed, useless. When one wants to really extract
some knowledge of a dataset, the loss of some entries, even if those are elements that
do not change the lattice, is tragic. That is why we consider the next strategy.

The third way of overcoming limitations due to the dimension and the size of the
dataset that we consider in this dissertation is the restriction of the set of computed
concepts. Instead of considering all the d-concepts of a d-context, some applications
that do not tolerate the loss of information implied by reduction are compatible with
another approach: the computation of introducer concepts. Introducer concepts are
well studied in 2-dimensions, where they received considerable attention under the
name of AOC-posets or Galois sub-hierarchies. They are widely used in applications,
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including in this dissertation in Chapter 6. In this chapter, we define the set of intro-
ducer concepts in d-dimensions and give some insight on the structure of this set and
its combinatorics.

5.1 Reduction in d-contexts

5.1.1 Reduction in 2-contexts
A context can be constructed from the set of its concepts in the following way: the set
of objects is the extent of the largest concept, the set of attributes is the intent of the
smallest concept, and the relation between them is the union of all pairs (a, b) such
that (A,B) is a concept of the context and a is an element of A, and b an element of
B. This relation between a lattice and its representation as a context is already hinted
at in [2, Chapter v].

On the other hand, two concept lattices from different contexts can be isomorphic
to each other. Reduction is a way of reaching a canonical context, the standard con-
text, for any finite lattice. The first step of reduction in 2-dimension is the fusion of
identical rows or columns.

Definition 55 (Reformulated from [3, Definition 23]). A context (S1,S2,R) is called
clarified if for any objects o1 and o2 in S1, o′1 = o′2 implies that o1 = o2. Corre-
spondingly, for any attributes a1 and a2 in S2, a′1 = a′2 implies a1 = a2.

In [3, Definition 23], the authors use the following example of a context that repre-
sent the service offers of an office supplies business an the associated clarified context
(Figure 5.1).

Another possible action is the removal of attributes (resp. objects) that can be
written as combination of other attributes (resp. objects). This is the proper definition
of reducible attribute (resp. object). If a is an attribute and A is a set of attributes that
does not contain a but have the same extent, then a is reducible. By definition, full
rows and full columns are always reducible.

Definition 56 (Reformulated from [3, Definition 24]). A context (S1,S2,R) is called
row reduced if every object-concept is ∨-irreducible and column reduced if every
attribute-concept is ∧-irreducible. A context that is both row reduced and column
reduced is reduced.

This yields that for every finite lattice L, there is a unique (up to an isomorphism)
reduced context such that L is the concept lattice of this context. This context is
called the standard context of L. This standard context can be obtained from any
finite context by first clarifying the context and then deleting all the objects that can
be represented as intersection of other objects and attributes that can be represented
as intersection of other attributes.

5.1.2 Reduction in d-dimensions
To define reduction in multidimensional context, we need to recall some definitions.
Let π = (i, {1, . . . , d} \ i) be a binary partition of {1, . . . , d}, the context C =



5.1. REDUCTION IN D-CONTEXTS 67

Furniture Computers Copy-
machine Typewriters Specialized

machines
Consulting × × × × ×
Planning × ×

Installation × × × × ×
Instruction × × × ×
Training ×

Spare parts × × × × ×
Repairs × × × × ×
Service

contracts × × ×

Furniture Computers
Copy-machine

and
Typewriters

Specialized
machines

Consulting,
Installation, Spare

parts, repairs
× × × ×

Planning × ×
Instruction × × ×
Training ×

Service contracts × ×

Figure 5.1: Context and clarified context

(S1, . . . ,Sd,R) gives rise to the context Cπ = (Si,
∏
j∈{1,...,d}\{i} Sj ,Rπ) where

(a, b) ∈ Rπ if and only if a× b1 × bd−1 ∈ R and b = b1 × bd−1. We refer the reader
to figures 4.1 and 1.10 for a graphical representation of this transformation. Such a
binary partition gives rise to the derivation operators X 7→ X(π) on the 2-context Cπ .

We first defined clarified contexts. In the same way that in the 2-dimensional case,
our definition is equivalent to the fusion of identical (d− 1)-dimensional layers.

Definition 57. A d-context (S1, . . . ,Sd,R) is called clarified is for all i in {1, . . . , d},
for any x1 and x2 in Si, x(π)

1 = x
(π)
2 implies x1 = x2, with π = (i, {1, . . . , d} \ i).

As with the 2-dimensional case, we provide an example in Figure 5.2.

Definition 58. A clarified d-context C = (S1, . . . ,Sd,R) is called i-reduced if every
object-concept from C(π), with π = (i, {1, . . . , d} \ {i}) is ∨-irreducible. A d-context
is reduced if it is i-reduced for all i in {1, . . . , d}.

Proposition 59. Let C = (S1, . . . ,Sd,R) be a d context. Let π be a binary partition
(i, {1, . . . , d} \ {i}). Let yi be an element of dimension i and Yi be a set of elements
of dimension i such that yi is not in Yi and y(π)

i = Y
(π)
i . Then,

T (C) ∼= T

S1, . . . ,Si \ {xi}, . . . ,Sd,R∩

Si \ {xi} × ∏
j∈{1,...,d}\{i}

Sj

 .

Proof. Without loss of generality, let us assume that xi is an element of S1. We
have to ensure that if (X1, . . . , Xd) is a concept of C, then (X1 \ {xi}, . . . , Xd) is a
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a b c a b c a b c
α × × × ×
β × × × × ×
γ × × × × ×

1 2 3

(α, 1) (α, 2) (α, 3) (β, 1) (β, 2) (β, 3) (γ, 1) (γ, 2) (γ, 3)
a × × × × ×
b × × × × ×
c × × × ×

a and b c a and b c a and b c
α × ×
β × × × ×
γ × × ×

1 2 3

Figure 5.2: A 3-context C = (Numbers,Greek, Latin,R) (above) and the 2-
context Cπ with π = (Latin, {Greek,Numbers}). We can see that a(π) = b(π) =
{(α, 1), (α, 2), (β, 2), (γ, 1), (γ, 3)}, which means that a and b can be aggregated into
a new attribute “a and b”. Below, the corresponding clarified 3-context.

concept in the reduced context. In C, (X1 \ {xi}, . . . , Xd) is a d-box full of crosses.
We have to show that removing xi from X1 does not allow it to be extended on
any other dimension. As (S1, . . . ,Sd,R) is a d-concept, its components Xj , j 6= i
form a (d − 1)-concept in the intersection of all the layers induced by the elements
of dimension i. As xi is reducible, Cxi is the intersection of at least two layers Ca
and Cb. Obviously, a and b are elements of X1. If (X2, . . . , Xd) is not a (d − 1)-
concept in the intersection pf the layers Cx, x ∈ X1 \ {xi}, then it can be extended
using crosses that both Ca and Cb share. This means that Cxi should have them too,
preventing (S1, . . . ,Sd,R) from being a concept in the first place. This ensures that
(X1 \ {xi}, . . . , Xd) is indeed a concept.

This proposition states that removing a reducible element from a d-context does
not change the structure of the underlying d-lattice. If we keep track of the reduced
and clarified elements during the process, it is possible not to lose information (by
creating aggregate attributes or objects for example). It is still a deletion from the
dataset. In the next section we speak about introducer concepts in a multidimensional
setting.

5.2 Introducer concepts
Reduction induces a loss of information in a dataset since reducible elements are
erased. Lots of applications cannot afford this loss of information and have to use
other ways of reducing the complexity. A new structure, smaller than the concept



5.2. INTRODUCER CONCEPTS 69

lattice, has been introduced by Godin and Mili [44] in 1993. This structure consists
in the restriction of the lattice to the set of introducer concepts. In the general case,
the properties that make a concept lattice a lattice are lost when restricting the set of
concepts to the introducers. The set of introducers can still be ordered by inclusion on
either of their dimensions to obtain a poset. Since dyadic FCA deals with objects and
attributes, such a poset is also called an Attribute Object Concept poset, or AOC-poset
for short. In this section we introduce the introducers in a d-dimensional setting.

First of all, let us recall the definition of object-concepts and attributes-concepts.

Definition 60. Let C = (S1,S2,R) be a context. Let o be an element of S1. Then
({o}′′, {o}′) is an object-concept, called the introducer of object o.

Definition 61. Let C = (S1,S2,R) be a context. Let a be an element of S2. Then
({a}′, {a}′′) is an object-concept, called the introducer of attribute a.

Due to the unicity of the dyadic closure (one component of a concept lets only one
choice for the other), each element of the dimensions have only one introducer. This
allows to bound the size of an AOC-poset by the number of objects plus the number
of attributes of a context, when a concept lattice can have up to an exponential size in
the number of objects or attributes. As we will see in the following, this property is
lost when we go multidimensional.

Definition 62. Let i be a dimension called the height while all other dimensions are
called the width. Let x be an elements of dimension i. The concepts with maximal
width such that x is in the height are the introducer concepts of x. The set of intro-
ducer concepts of x is denoted Ix.

a b c a b c a b c a b c
α × × × × × ×
β × × × × × ×
γ × × × × × × ×

1 2 3 4

Figure 5.3: This 3-context shall serve as an example of our definitions.

Let us consider the 3-context from Figure 5.3 as an example. Let us compute the
introducers of element a. We have Ia = {(12, αβγ, a), (123, αβ, a), (1234, α, a)}.
For the element 3, we have I3 = {(123, αβ, a), (3, β, ab), (34, βγ, b), (34, γ, bc)}.

We denote by I(Si) the union of the introducer concepts of all the elements of a
dimension i and by I(C) the set of all the introducer concepts of a context C.

Proposition 63. (I(C),.1, . . . ,.d) is a d-ordered set.

Proof. Let A = (A1, . . . , Ad) and B = (B1, . . . , Bd) be in I(C). We recall that
Ai ⊆ Bi ⇔ A ≤i B and that Ai = Bi ⇔ A ∼i B. Without loss of generality, A is
an introducer for an element of dimension i and B for an element of dimension j. If,
for all k between 1 and d, A ∼k B, then for all k, Ak = Bk and A = B (Uniqueness
Condition).
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If A and B are distinct, then there exists a dimension k such that A .k B or
B .k A. Without loss of generality, let us assume the former. Suppose that there is
no ` between 1 and d such that A .` B. That implies that all the components of A
are included in the components of B, which is a contradiction with the maximality
condition implied by A being a concept. Thus, there exists a h in {{1, . . . , d}} \ {k}
such that B .h A (Antiordinal Dependency).

From now on we can mirror the terminology of the 2-dimensional case, where
we have complete lattices and attribute-objects-concepts partially ordered set and use
complete d-lattices and introducers d-ordered sets.

The following proposition links introducer d-concepts with the (d − 1)-concepts
that arise on a layer of a d-context.

Proposition 64. Let x be an element of dimension i. If (X1, . . . , Xi−1, Xi+1, . . . ,
Xd) is a (d−1)-concept of Cx, then there exists someXi such that (X1, . . . , Xi−1, Xi,
Xi+1, . . . , Xd) is an introducer of x. If (X1, . . . , {x} ∪Xi, Xd) is an introducer of
x, then there exists a (d− 1)-concept (X1, . . . , Xi−1, Xi+1, . . . , Xd) in Cx.

Proof. We suppose, without loss of generality, that x is in S1. The (d − 1)-concepts
of Cx are of the form (X2, . . . , Xd). If (x,X2, . . . , Xd) is a d-concept of C, then it is
maximal in width and has x in its height, so it is an introducer of x.

If (x,X2, . . . , Xd) is not a d-concept of C, it means that it can be augmented only
on the first dimension (since (X2, . . . , Xd) is maximal in Cx). Thus, there exists a
d-concept ({x} ∪ X1, X2, . . . , Xd) that is maximal in width and has x in its height
and is, as such, an introducer for x.

Suppose that there is aX = (X1, . . . , Xd) that is an introducer of x but that is not
obtained from a (d−1)-concept of Cx by extendingX1. It means that (X2, . . . , Xd) is
not maximal in Cx, else it would be a (d− 1)-concept). Then there exists a d-concept
Y = (Y1, Y2, . . . , Yd) with x ∈ Y1 ⊆ X1 and Xi ⊆ Yi for all i between 1 and d. This
is a contradiction with the fact that X is an introducer of x.

Proposition 64 states that every (d−1)-concept of a layer Cx maps to an introducer
of x in C and that every introducer of x is the image of a (d− 1)-concept of Cx. This
proposition gives a naive algorithm to compute the set of introducer concepts of a
d-context. It is sufficient to compute the (d − 1)-concepts of the (d − 1)-contexts
obtained by fixing an element of a dimension.

Algorithm 3 computes the introducers for each element of a dimension i. For a
given element x ∈ Si, we compute T (Cx). Then, for each (d − 1)-concept X ∈
T (Cx), we build the set Xi needed to extend X into a d-concept. An element y is
added to Xi when y×

∏
j 6=iXj ⊆ R, that is if there exists a (d−1)-dimensional box

full of crosses (but not necessarily maximal) inR, at level y. The final set Xi always
contains at least x. To compute the set introducer concepts for a d-context, one needs
to call Algorithm 3 on each dimension of a d-context. In some applications, it may be
useful to compute the introducer concepts with respect to a given order .i.
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Algorithm 3: INTRODUCERDIM(C, i)
Input: C a d-context, i ∈ {1, . . . , d} a dimension
Output: I(Si) the set of introducer concepts of elements of dimension i

1 I ← ∅
2 foreach x ∈ Si do
3 C ← ∅
4 foreach X = (X1, . . . , Xi−1, Xi+1, . . . , Xd) ∈ T (Cx) do
5 Xi ← ∅
6 foreach y ∈ Si do
7 if

∏
j 6=iXj × y ⊆ R then

8 Xi ← Xi ∪ y

9 C ← C ∪ (X1, . . . , Xi, . . . , Xd)

10 I ← I ∪ C
11 return I

5.2.1 A small combinatorics intuition: powerset d-lattices
Unlike the 2-dimensional case, where introducers are unique and the size of the AOC-
poset is thus bounded by |S1| + |S2|, in the general case, it is bounded by Kd−1 ×∑
i∈{1,...,d} |Si|, with Kd the maximal number of d-concepts in a d-context. Since a

1-context has only one 1-concept, this bound is reached in the 2-dimensional case.
Let us consider a powerset 3-lattice T(5) on a ground set of size 5. It is (well)

known1 that T(5) has 35 = 243 concepts. However, the size of the introducer set
of the powerset trilattice T(5) is 30. Indeed, by Proposition 64 we know that there
exists a mapping between the 2-concepts of each layer induced by fixing an element
of a dimension and the introducers. As, by definition, every layer of the context
inducing a powerset trilattice has two 2-concepts, the number of introducer concepts
in a powerset 3-lattice on a ground set of five elements is then bounded by 3× 5× 2.
This number is reached as the unique “hole” in each layer intersects all the concepts
of the other layers. A more formal proof is given for a more general proposition below
(Proposition 65).

In fact, for any powerset 3-lattice on a ground set of size n, the corresponding
introducer d-ordered set has 3 × 2 × n elements. Figure 5.4 shows a 4-adic contra-
nominal scale on three elements. Figure 5.5 shows the introducers of the powerset
3-lattice on a ground set of 3 elements.

Proposition 65. Let d be an integer. A powerset d-lattice Td(n) on a ground set of n
elements has dn elements. Its corresponding introducer d-ordered set has d × (d −
1)× n elements.

Proof. Let C be a d-dimensional contranominal scale, that gives rise to Td(n). Let x
be an element of a dimension. The (d−1)-context Cx has only one hole (by definition
of a contranominal scale). This implies that the complementary hypergraph for Cx has

1not that well known, but it is said in this paper [45]
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a b c a b c a b c

A
α × × × × × × × ×
β × × × × × × × × ×
γ × × × × × × × × ×

B
α × × × × × × × × ×
β × × × × × × × ×
γ × × × × × × × × ×

C
α × × × × × × × × ×
β × × × × × × × × ×
γ × × × × × × × ×

1 2 3

Figure 5.4: This is a 4-adic contranominal scale where the empty cells have been
framed. Every layer induced by fixing an element (for example A) has three 3-
concepts (in CA we have (123, αβγ, bc), (123, βγ, abc) and (23, αβγ, abc)).

only one (d − 1)-edge, and thus d − 1 minimal transversals. This implies that each
(d − 1)-layer induced by fixing an element of a dimension has d − 1 concepts. By
Proposition 64, we know that there exists a mapping between the (d− 1)-concepts of
the layers and the introducer concepts of the context. Since we have d dimensions and
n layers by dimension, the number of introducer concepts is bounded by d×(d−1)×n

Moreover, let X = (X1, . . . , Xd) be an introducer concept for element x of di-
mension i. Then Xi = x. Indeed, by definition of a contranominal scale, there will
be a ‘hole’ per layer of the context C that will be in the width of X .

This ensures that the d × (d − 1) × n introducer concepts that arise from Propo-
sition 64 are distinct and that this number is reached.
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Dimension 1
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Figure 5.5: This represents a powerset 3-lattice. Its introducer concepts are filled in
red.
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Applications
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Even in good conscience, when dealing with abstract objects such as d-lattices
or hypergraphs, one can forget the strong relation that Formal Concept Analysis has
with data. In this dissertation, we try to be as clear and mathematically rigorous as
possible, and with these considerations, it is easy to stop thinking about how to use
lattices in practice. We did not forget the data, nor did we stop thinking about uses
and applications of lattices.

In this last part of the dissertation, we group three pieces of work into two chapters
that can be labelled as more applied than the first part (Combinatorics) or the second
(Algorithms). Here, we actually make use of Formal Concept Analysis and in a more
general way of lattice theory in real life applications.

We still have two chapters to go! They pretty much have the same structure. First,
we present the applicative context: “where does our problem come from?”. Second,
we present the proposed solution: “how do we address the problem?”. Finally, we
evaluate our solution: “did we propose a good solution?”.

Chapter 6 presents a problem of exploratory search that takes its roots in software
engineering. We introduce some algorithms to locally generate conceptual structures
such as AOC-posets or some parts of a relational lattice family.

In Chapter 7, we present the context of implicit authentification, together with
a classification method based on concept lattices, and some experiments. The au-
thentification is implicit when you don’t need to authenticate yourself, the system
recognises you.
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On-demand object and
(relational) attribute
exploration
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In this chapter we are interested in exploratory search. Exploratory search is an
information retrieval strategy that aims at guiding a user in a space of documents to
help them find their target. This process is adapted when a user is unfamiliar with the
data space or when the data is too large to be known in its entirety.

This chapter starts by a quick recall on exploratory search and a presentation of
the applicative context that serves as a ground for our algorithms. Then, we outline
algorithms to perform exploratory search in AOC-posets, through conceptual naviga-
tion. Finally, we change paradigm and leave AOC-posets in order to explore families
of lattices under the formalism of Relational Concept Analysis.

79
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6.1 Exploratory search

6.1.1 Applicative context
Software product line engineering (SPLE) [46] is a development paradigm which goal
is to efficiently create and manage a collection of related software systems, based on
their common characteristics.

A central point of SPLE is the modeling of the common parts and the variants
contained in the related software systems, called the variability of the software prod-
uct line. This variability is represented by variability models, which are the traditional
starting points of information retrieval operations in software product lines, including
product selection. Product selection is an important task that consists in guiding the
user into selecting the functionalities they want in the final derived software system.
The most prevalent approach to model variability relies on feature models (FMs) [47],
a family of visual languages that describe a set of features and dependencies between
them. Figure 6.1 depicts a feature model representing a software product line about
cell phones. A combination of features respecting all the constraints expressed in the
FM is called a valid configuration, and corresponds to a derivable software system.

Optional

Xor

Mandatory

Or

Requires Exclude

Cell Phone 

Wireless Display Accu Cell 

Infrared Bluetooth Strong Medium Weak 

Bluetooth→ Strong ; Infrared=Weak

Figure 6.1: Example of a feature model representing a software product line about
Cell Phones

Current approaches for product selection rely on the feature models to automat-
ically deploy configurations. These methods do not allow the user to change their
final configuration without having to start the product selection from scratch, or to see
which other configurations are similar to theirs. This can be considered too stiff for
an average user who may want to modify their choice. In this context, it is interesting
to apply exploratory search in the context of product selection to complement these
methods and offer a more flexible selection.

6.1.2 Conceptual navigation: exploratory search in FCA
Conceptual navigation allows a user to start from an existing or partial configuration,
explore similar ones, and be informed on how they can select or deselect features to
obtain other valid configurations. It is noteworthy that the number of valid configu-
rations depicted by a feature model grows exponentially with its number of features
(most notably when any combination of features gives a valid configuration). Re-
ducing the complexity of the underlying conceptual structure is important in order to
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conceive applications that would work in this context.
Lattice structures were among the first structures used to support information re-

trieval processes [48], and their usage was later generalized to Formal Concept Anal-
ysis. The concept lattice offers a convenient structure to do exploratory search, where
navigating from concept to concept by selecting or deselecting attributes emulates it-
erative modifications of the document descriptor. Exploratory search by conceptual
navigation has been used in several applications, for instance querying web docu-
ments [49] or browsing a collection of images [50].

FCA-based exploratory search raises some problems, mainly because of the size
(in terms of number of concepts) of the concept lattices. Moreover, a user can rapidly
get disoriented while navigating in such a large and convoluted structure.

Several methods have been proposed through the literature to reduce the com-
plexity of conceptual navigation. In [48], the authors choose not to show the whole
concept lattice to the user, but only a part of it, restricted to a focus concept and its
neighborhood. This is the same navigation approach that we apply in this chapter,
both on AOC-poset and on a relational lattice family. Other examples of uses can be
found in several works [50–52].

In [53], the authors propose two methods to extract trees from concept lattices and
use them as less complex structures for browsing and visualization. The difference
between the two methods lies in the way the “best” parent for each concept in the
tree is assigned: the first one is based on the selection of one parent per layer, and the
second one on conceptual indexes. They then simplify again the final structure by ap-
plying two reduction methods based on fault-tolerance and clustering on the extracted
trees. In [54], the authors propose a tool to build and visualize formal concept trees.

In [55], the authors give a FCA-based approach to select services and compose
meaningful applications in a context of smart house. They aim at ensuring that, at
runtime, the application is as adapted as possible to the environment. To this end,
they use an approach that generates only part of the concept lattice (the filter of some
starting configuration).

Carpineto and Romano [49] allow a user to bound the information space by dy-
namically applying constraints during the search to prune the concept lattice. Bound-
ing allows to reduce the explorable data space and help the user focus on the parts they
are interested in. Following the same idea, iceberg concept lattices [56] are pruned
structures that only show the top-part of concept lattices which can be used to perform
conceptual navigation, when some monotonous metric is involved.

In [52], the authors present SearchSleuth, a tool for local analysis of web
queries based on FCA, that derives a concept and its neighborhood from a query.
Because the domain cannot be computed entirely, it generates a new formal context
at each navigation step: for each user query, it retrieves the list of results, extracts the
relevant terms, and builds a context from these terms and their associated documents.
The navigation is managed through an interface which suggests terms, making the
underlying graph structure and its complexity implicit.

Alam et al. [51] present a tool, LatViz, that provides several operations to reduce
the information space. One of them facilitates the visualization and the navigation.
The authors propose to display the concept lattice level-wise: selecting a concept at a
level ` displays all its sub-concept at level `−1. Another functionality allows to prune
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the concept lattice by restricting navigation in sub-concepts and/or super-concepts of
concepts selected by the user, in the same way as in [49]. Also, the tool lets one
compute AOC-posets to support conceptual navigation: the authors describe AOC-
posets as the “core” of their corresponding concept lattices. However, they compute
the whole structure using the Hermes algorithm and do not propose an on-demand
generation.

Greene el al. [57] discuss refinement and enlargement (broadening) approaches
which are not restricted to neighbor concepts, and therefore allow navigation by non-
minimal steps to ease exploratory search in large information spaces.

Exploratory search also exists in the context of association rules. This is closely
related to the exploration in concept lattices. The study in [58] use exploration in a
set of assocation rules. They introduce some reduction operators that allow to prune
the set of rules to consider.

6.2 Conceptual navigation in AOC-posets

In order to jump from software engineering to Formal Concept Analysis, it is neces-
sary to define the model that we will use. We need to define a set of objects, attributes
and a relation between them. We will simply use the set of features as attributes.
The set of objects is the set of valid configurations. The relation is straightforwardly
derived from which valid configurations has which features. This application uses
exclusively 2-dimensional contexts and 2-dimensional introducer posets.

6.2.1 Are AOC-posets good supports for exploratory search?

We recall that a concept introducing at least one attribute is called an attribute-concept
(AC), and a concept introducing at least one object is called an object-concept (OC).
A concept can introduce both an attribute and an object (attribute-object-concept
(AOC)), or it can introduce neither of them (plain-concept). When using the sim-
plified representation of extents and intents, plain-concepts appear in the lattice as
concepts with empty extents and intents.

Cell Phone Wireless Infrared Bluetooth Display Accu Cell Strong Medium Weak

c1 × × × ×
c2 × × × ×
c3 × × × ×
c4 × × × × × ×
c5 × × × × × ×
c6 × × × × × ×
c7 × × × × × × ×

Figure 6.2: Formal context depicting the 7 configurations of the software product line
about cell phones. The objects are names ci because, in our context, they represent
configurations.
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Figure 6.3: Concept lattice (left) and AOC-poset (right) associated with the formal
context of Figure 6.2

Figure 6.2 shows the formal context associated with the feature model in Fig-
ure 6.1. In some types of applications, it is not necessary to take plain-concepts into
account. For instance, this is the case when the lattice is only used as a support to orga-
nize objects by their attributes where they are therefore represented by their introducer
concepts, and not to highlight maximal groups of elements. In these particular cases,
one can benefit from only generating the sub-order restricted to the introducer con-
cepts instead of the whole concept lattice. This smaller structure (in terms of number
of concepts) is the Attribute-Object-Concept partially ordered set (AOC-poset).

Figure 6.3 (right) presents the AOC-poset associated with the context from Fig-
ure 6.2: it corresponds to the partial order of concepts from Figure 6.3 (left), minus
Concept_0 and Concept_7. While the concept lattice associated to a formal context
(O,A,R) can have up to 2min(|A|,|O|) concepts, the associated AOC-poset cannot
exceed |O|+ |A| concepts.

AOC-posets can be used as a smaller alternative to concept lattices to structure
a collection of objects depending on the attributes they share and navigate through
this collection by selecting and deselecting attributes. However, when concept lat-
tices represent all the possible queries that a user can formulate, AOC-posets restrict
this set to the minimal queries required to perform conceptual navigation. As we have
seen before, neighbor concepts in a concept lattice represent minimal possible modifi-
cations a user can make to the current query and therefore offer a data space in which
one can navigate in minimal steps. This means that concept lattices allow to select
and deselect non-cooccurrent attributes one by one. AOC-posets do not preserve the
minimal step query refinement/enlargement property, but factorize the possible query
modification steps to keep the most prevalent ones (the ones that correspond to valid
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configurations, or, in our model, objects). For instance, in the concept lattice of Fig-
ure 6.3 (left), if a user has selected Concept_4 as the current concept, they can choose
to deselect attribute Bluetooth and thus move to Concept_7. From this concept, they
can now choose to deselect either Strong or Wireless and move respectively to Con-
cept_9 or Concept_10. In AOC-posets, because plain-concepts, that play the role of
“transition steps”, are not present, the choices that allow to move from concept to con-
cept are condensed. This time, in Figure 6.3 (right), if a user wants to enlarge their
query from Concept_4, they can either deselect both Bluetooth and Strong in one step
to move to Concept_9, or deselect both Bluetooth and Wireless to reach Concept_10.

6.2.2 Exploration algorithm
On-demand, or local, generation consists in generating only the part of the structure
we are interested in, and has already been applied to concept lattices, with algorithms
such as NEXTCLOSURE [3]. To our knowledge, several algorithms exist to build
AOC-posets: Ares, Ceres, Pluton and Hermes [59]. However, none of them performs
on-demand generation of AOC-posets. In what follows, we outline algorithms to
retrieve the conceptual neighborhood of a given concept in an AOC-poset.

The exploration can start from the top concept (the most general query) when the
user wants to make a software configuration from scratch. It is also possible that the
user already has partial knowledge of their goal. In this case, it is necessary to be
able to start the exploration from any set of features. As the concept corresponding
to the (potentially partial) configuration that the user has in mind does not necessarily
introduce an object or an attribute, we suppose that the input of the exploration is a
formal concept, plain or not. The problem is thus to compute, for any concept in a
concept lattice, its conceptual neighborhood in the AOC-poset.1

Let us start with computing the upper covers. We are looking for the smallest
attribute-concepts or object-concepts greater than the input. We start out by comput-
ing the smallest attribute-concepts greater than our input concept C. They can be
obtained by computing the concepts ({a}′, {a}′′) for each attribute a in the intent of
C. We remark that a concept ({a1}′, {a1}′′) is a super-concept of another concept
({a2}′, {a2}′′) if and only if a1 is in {a2}′′. As such, the smallest attribute-concepts
are the ones that are computed from attributes that do not appear in the closures of
other attributes.

Once we have the smallest attribute-concepts, we want to compute the smallest
object-concepts that are between them and C. This means that we are looking for
concepts of the form ({o}′′, {o}′) such that o is in the extent of one of the attribute
concepts we have and {o}′ is contained in the intent of C. We remark once again
that a concept ({o1}′, {o1}′′) is a super-concept of another concept ({o2}′, {o2}′′)
implies o2 is in {o1}′′ and that the closures of some objects give us information on
object-concepts that cannot be minimal.

An illustration of this process is shown in Figure 6.4, that shows a context and its
associated AOC-poset (in the lightened representation).

1If the concept is an introducer, then we need its conceptual neighborhood in the AOC-poset. If the
starting concept is not an introducer and as such is not in the AOC-poset, we want its closest neighbors that
are introducers.
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Starting point

o1, o2

Concept 1
a2

o3

Concept 2

o4

Concept 3
a1

o5

Concept 4
a3

o6

Concept 5
a4

o7

a1 a2 a3 a4

o1 × × × ×
o2 × × × ×
o3 × ×
o4 × ×
o5 ×
o6 ×
o7 ×

Figure 6.4: First, we compute the attribute-concepts corresponding to the attributes
in the intent of our starting concept. This gives us concepts 1, 3, 4 and 5. Then,
by keeping only the concepts that are computed from attributes that do not appear in
the closures of other attributes, we are left with concepts 1, 4 and 5. The next step
is to compute the object-concepts that are between those attributes-concepts and the
starting concept. In this example, we obtain concept 2.

Proposition 66. Algorithm 4 computes the upper cover of the input concept in the
AOC-poset.

The first loop computes the closure of single attributes. Each closure allows us
to remove attributes that correspond to non-minimal attribute-concepts. The resulting
set R contains the intents of the attribute-concepts that are both super-concepts of Ci
and minimal for this property.

The second loop constructs the setO of objects that are in the extent of an element
of R but not in the extent of Ci.

The third loop removes the objects of O that cannot possibly be introduced by a
superset of Ci.

Finally, the fourth loop removes the objects ofO that produce non-minimal object-
concepts. The attribute-concepts that are no longer minimal are also removed.

Therefore, considering the initial configuration, the object-concepts introduce the
most similar and more generalized configurations, and the attribute-concepts show the
factorized possible attribute deselections the user can make.

Computing the lower covers is done using the same algorithm, exchanging the
roles of attributes and objects. This time, object-concepts present the most similar and
more specialized configurations, and the attribute-concepts the possible condensed
attribute selections.
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Algorithm 4: UPPER COVER

Input: A concept C
Output: The upper covers of C in the AOC-poset

1 A← Int(C)
2 foreach a ∈ A do
3 Y ← {a}′′
4 A← A \ {Y \ {a}}
5 R← {{a}′′|a ∈ A}
6 O ← ∅
7 forall S ∈ R do
8 X ← S′

9 O ← O ∪ (X \ Ext(C))

10 forall o ∈ O do
11 if o′ 6⊂ Int(C) then
12 O ← O \ {o}

13 forall o ∈ O do
14 T = {S|(S ∈ R) ∧ (o ∈ S′)}
15 R← R \ T
16 Y ← {o}′′
17 if ∃p ∈ O such that p ∈ Y then
18 O ← O \ {o}

19 R← {({o}′′, {o}′) | o ∈ O}
20 return R

6.2.3 Evaluation
We have implemented our algorithms, and we tested them on software product line
datasets extracted from the SPLOT repository2. SPLOT (for Software Product Line
Online Tools) is an academic website providing a repository of feature models along
with a set of tools to create, edit and perform automated analysis on them. We have
selected thirteen representative feature models which describe software product lines
as e-shops, cell phones or video games, from small sizes (13 configurations) to larger
ones (4774 configurations). To test our method on data extracted from feature models,
we first create a formal context configurations × features for each one of them.
Then, from a context, our implementation allows to find a concept corresponding to a
subset of features and compute its conceptual neighborhood in AOC-posets.

In this experiment, we assume that a user will not exceed 50 navigation steps,
as they want to be familiarized to the similar valid configurations around their initial
selection of features. To measure the gain of our method in terms of number of com-
puted concepts, we compare for each context the number of computed concepts for 50
navigation steps (i.e., a concept and its neighborhood) to the total number of concepts
in the associated AOC-poset and concept lattice. The results are presented in Fig-

2http://www.splot-research.org/
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ure 6.5. The concept lattice curve represents an upper-bound to visualize more easily
the gain of AOC-posets and local-generation of AOC-posets comparing to concept
lattices.

Figure 6.5 shows that both aspects of our method (the use of AOC-posets and their
partial generation) are useful for datasets that generate lattices with a size around
seven hundred concepts or more. The difference between AOC-posets and concept
lattices when the structures are small is not very important (e.g., 19 concepts against
25, 131 against 166), but AOC-posets become very interesting with larger structures
(e.g., 1074 concepts against 5761, 669 against 6430).

For small datasets, 50 navigation steps create some redundancy and thus a big
number of computed concepts. For bigger datasets, 50 navigation steps allow to visit
an important number of concepts (several hundreds), while still being small with re-
gards to the whole concept lattice.
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Figure 6.5: Number of generated concepts for AOC-posets and conceptual neighbor-
hood for 50 navigation steps, depending on the size of their associated concept lattices
(logarithmic scale)

We also present some further experiments on some other datasets. We consider
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nineteen datasets for which the size of the lattices range from 298 to 4361. On the next
figure, Figure 6.6, we represent, for each dataset, the number of computed concepts
in the concept lattice, and then for some numbers of steps depending on the size of
the lattice or the number of objects (square root or logarithmic value). We show the
number of concepts generated for a hundred steps as an indication.
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Figure 6.6: Each line corresponds to a dataset. We consider that the number of con-
figurations that a user wants to explore can be a function of the number of valid con-
figurations or the number of concepts in the lattice.
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6.3 Conceptual navigation and RCA
In this section, we continue the work of exploratory search on a new setting. Instead
of looking at concept lattices or AOC-posets, we are now interested in a Relational
Concept Analysis (RCA) lattice family. The remainder of this chapter is organized
as follows: we start by introducing RCA and the principal task that we want to ad-
dress that is conceptual navigation in a family of lattices. Then, we introduce some
algorithms that allow to locally generate a relational family. The last section shows
an example of a step of our algorithms.

6.3.1 Notions of Relational Concept Analysis
Relational Concept Analysis (RCA) [60–62] is an extension of Formal Concept Anal-
ysis to multirelational data. Instead of using only a context as starting point, the data
structure on which RCA is based is a relational context family: a family of contexts
and relations between the objects of those contexts.

Definition 67. A relational context family is a pair (K,R) where

• K is a set of formal contexts Ki = {Oi,Ai, Ii}, with Oi the set of objects of
context Ki, Ai its set of attributes and Ii the relation between them;

• R is a set of relational contexts (Oi,Oj , rij), where Oi is the set of objects of
context Ki from K, Oj is the set of objects of context Kj from K and rij ⊆
Oi ×Oj is a relation between them. Context Ki is called the source context of
the relation while context Kj is called the target context of the relation.

For an object o of formal context Ki and a relation rij between Ki and Kj , we
denote by rij(o) the set of objects from Kj that are related to o by rij .

Tables 6.1 and 6.2 show an example of a relational context family (K,R). This
relational context family is borrowed from an application of software product line
engineering. Table 6.1 shows the contexts of K while Table 6.2 shows the relational
context of R. In K, the table labeled DM_tools shows five data modeling tools, with
their compatible operating systems (OS) and the data models (DM) that they support.
The table labeled DBMS describes four database management systems and the data
types (DT) that they can handle.

In R, the table Supports represents a relational context that states which data
modeling tools support which database management systems. This context represents
a relation between the objects of DM_tools and those of DBMS.

RCA works by iterative steps. The first step will build one concept lattice per
context in K (the concept lattices associated with the two contexts of K are shown in
Figure 6.7). The links that are expressed in R are not taken into account at this point.

The links are then introduced between objects using relational attributes: they
introduce the concepts of the target context in the source context through a relation
and a scaling operator. The relational attributes are integrated in the contexts as new
attributes. A context K augmented with new relational attributes is usually denoted
K+. A relational attribute has the form “ρ r.C” where ρ is a scaling operator, r is
a relation and C is a concept from the target context, that has some properties with
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Table 6.1: Two formal contexts: (above) Data Modelling tools (DM_tools) and (be-
low) DataBase Management Systems (DBMS).

R =

Supports MySQL Oracle PostgreSQL Teradata
Astah × ×
Erwin DM × × ×
ER/Studio × × × ×
Magic Draw × × ×
MySQL Workbench ×

Table 6.2: This relation context shows a relation between the set of objects of both
contexts from K.

respect to the relation and the scaling operator. We will soon give examples of some
links that arise from our example. First, we need to define the scaling operators and
how they allow to represent those links.

We focus on two scaling operators: the existential scaling operator ∃ and the
universal strict scaling operator ∃∀.

Definition 68 (Existential Scaling). Let Ki and Kj be formal contexts of K. Let rij
be a relation between them. For every object o ofKi and every conceptC of the target
context Kj , if rij(o) intersects the extent of C, then we extend the set of attributes of
Ki with the relational attribute ∃ rij .C and add it to the attributes that describe o in
Ki.

Let us consider the relation Supports from Table 6.2. We apply the existential
scaling between DM_tools and DBMS. For each object o of DM_tools, we look at
which concepts of DBMS have some object in their extent that is related to o by the
relation Supports. For those concepts, we add a relational attribute in DM_tools that
contains the scaling operator ∃, the name of the relations (abbreviated “sup”) and the
identifier of the concept. The result of the existential scaling on DM_tools is shown
in Table 6.3.

Definition 69 (Universal strict scaling). Let Ki and Kj be formal contexts of K. Let
rij be a relation between them. For every object o of Ki and every concept C of the
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Figure 6.7: Concept lattices associated with DM_tools (left) and with DBMS (right).
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Astah × × × × × × × × ×
Erwin DM × × × × × × × × × × ×
ER/Studio × × × × × × × × × × × ×
Magic Draw × × × × × × × × × × × ×
MySQL Workbench × × × × × × ×

Table 6.3: Formal context DM_tools extended according to the relation Support, with
the scaling operator ∃.

target context Kj , if rij(o) is a non-empty subset of the extent of C, then we extend
the set of attributes of Ki with the relational attribute ∃∀ rij .C and add it to the
attributes that describe o in Ki.

Let us consider the relation Supports from Table 6.2. We apply the universal strict
scaling between DM_tools an DBMS. For each object o of DM_tools, we look at
which concepts of DBMS contain all the relatives of o by rij in their extent. For those
concepts, we add a relational attribute in DM_tools that contains the scaling operator
∃∀, the name of the relations (abbreviated “sup”) and the identifier of the concept.
The result of the universal strict scaling on DM_tools is shown in Table 6.4.

After applying a scaling operator, the relational context family is updated: the
contexts from K may have been extended with new relational attributes. We call this
new set of contexts Ks, for step s. The concept lattice of those extended contexts
structures the objects by their attributes and their relational attributes, allowing the
links to be represented.
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Astah × × × × ×
Erwin DM × × × × ×
ER/Studio × × × × × ×
Magic Draw × × × × × × ×
MySQL Workbench × × × × × × ×

Table 6.4: Formal context DM_tools extended according to the relation Support, with
the scaling operator ∃∀.

The succession of steps as described above allows to reach some further relations:
in a more complex data model that includes more than one relation, RCA will pro-
duce a succession of concept lattices that will be extended at each step with the new
relational attributes. At step 0, the concept lattices are simply the ones built from
the initial formal contexts, as shown in Figure 6.7. At step s, the formal contexts
from Ks are extended with relational attributes that depend on the concepts of the
concept lattices of Ks−1 and the relations expressed in R. The process stops either
when a maximal depth or a fix point3 is reached. In the process of RCA as described
here, a fix point exists and is garanteed to be reached: in [62], Mohamed Rouane
Hacene, Marianne Huchard, Amedeo Napoli and Petko Valtchev give a sequence that
describes the process of extention of the contexts, and show that it stops by observ-
ing that the number of objects does not change, hence the process is bounded by the
Boolean lattice of the set of objects.

Tables 6.3 and 6.4 are good indicators that a context Ki might be extended by
a lot of relational attributes (the size of the lattice associated to the target context
of the relations starting from Ki). In order to reduce this growth, a variant of RCA
using AOC-posets has been introduced: RCA-AOC [63]. The rules of RCA-AOC are
almost the same as the rules of RCA: instead of choosing the concept that satisfy the
rule associated with a scaling operator in the concept lattice, we select them in the
AOC-poset.

The principal difference between classical RCA and RCA-AOC is that RCA-AOC
does not always reach a fix point.4 In our application, we tackle this problem by
setting a maximal depth for our process.

6.3.2 Conceptual navigation in a relational context family

Let us describe the process that we want to set up in order to navigate in a relational
context family. Our starting point is a concept C of a context Ki. From now on, Ki

will be called our starting context and C our starting concept. The first thing that we

3A fix point is reached when the contexts from a step are identical to the contexts from the previous step
and the lattice family is isomorphic to that of the previous step.

4There is no official publication where this is proved, but an example exists, if I’m to believe Marianne
Huchard’s word (and I do).
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have to define is our exploration strategy. An exploration strategy is a set of pairs of
the form (rij , ρ) where the rij are relations between the starting context and another
context Kj of the RCF and the ρ are scaling operators. The relational neighborhood
of a concept is the set that consists of its upper cover, lower cover and related concepts
in other lattices. That is the output that we want to be able to visualize fromC. In fact,
the real output of our exploration algorithm is the closed relational neighborhood, that
is the relational neighborhood together with a completed version of C with relational
attributes. Since our process may consist of various of the above-described steps, the
relational context family is also updated with relational attributes.

This process allows a user to choose which relations they want to follow in their
exploration (by the way of the strategy). At each step, we update part of the relational
context family (contrasting with classical RCA, where everything is updated at each
step). We cannot guarantee that the process converges. In order to tackle that problem,
we also consider that the user defines a maximal depth for their exploration.

6.3.3 Redefining the derivation operators

The explicit knowledge of all the relational attributes of a context requires the compu-
tation of all the concepts of all its related contexts. In an exploration setting, we don’t
want to spare the time that amounts to the exhaustive computation of the relational
concepts of multiple contexts. We would prefer to manipulate only a minimal number
of relational attributes that would allow us to derive, on-the-fly, the other relational
attributes.

From now on, we use the notation a ∼ ρ r.(X,Y ) to indicate that a is a relational
attribute that uses ρ as a scaling operator, a relation r and a concept (X,Y ).

Any object described by a relational attribute ρ r.(X,Y ) is also necessarily de-
scribed by all the relational attributes associated to more general concepts, that is at-
tributes of the form ρ r.(X2, Y2) with Y2 a subset of Y . Intents can thus be represented
without loss of information by their relational attributes constructed from attribute-
wise maximal concepts (we will refer to them as maximal relational attributes for
short in the sequel). However, a problem arises with such representation: the set in-
tersection cannot be used to compute the intent of a set of objects anymore. Similarly,
if only maximal relational attributes are explicitly present in the context, the extent of
a set of attributes cannot be computed through a simple test of set inclusion. To rem-
edy this problem, we provide three algorithms to be used in place of the traditional
derivation operators on set of objects or attributes (both classical or relational) when
only the maximal relational attributes are given explicitly.

Algorithm 5 INTER takes as input two sets of attributes A and B represented by
their maximal relational attributes. It outputs the set of maximal relational attributes of
their intersection. A relational attribute ∃ r.(X1, Y1) is in the intersection of A and B
if and only if there exists an attribute ∃ r.(X2, Y2) in A and an attribute ∃ r.(X3, Y3)
in B such that X1 is included both in X2 and in X3. The same holds for the ∃∀
operator. Algorithm 5 computes the maximal relational attributes of the intersection
of A and B by recursively intersecting the intents of the concepts used to build the
relational attributes in A and B. The fact that, at any given time, the depth of all the
relational attributes is bounded ensures that the recursion ends.
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Algorithm 5: INTER(Ki, A,B)

Input: Ki = (Oi,Ai, Ii) a formal context, A ⊆ Ai a set of attributes,
B ⊆ Ai the intent of an object o.

Output: The relational intersection of the set A and the intent of o.
1 R← A ∩B
2 F ← ∅
3 foreach a ∼ ∃ rij .(X1, Y1) ∈ B do
4 foreach a2 ∼ ∃ r.(X2, Y2) ∈ A do
5 F ← F ∪ {∃ r.(EX(Kj , INTER(Kj , Y1, Y2)), INTER(Kj , Y1, Y2))}

6 R← R ∪MAX(F ,⊆Ai)
7 F ← ∅
8 foreach a1 ∼ ∃∀ r.(X1, Y1) ∈ B do
9 foreach a2 ∼ ∃∀ r.(X2, Y2) ∈ A do

10 F ← F ∪ {∃∀ r.(EX(Kj , INTER(Kj , Y1, Y2)), INTER(Kj , Y1, Y2))}

11 R← R ∪ F
12 return R

K a b c ∃r.(X1, Y1) ∃r.(X2, Y2)
o1 × × ×
o2 × × × ×
o3 × × ×

Figure 6.8: This formal context has two relational attributes by relation r (the relation
is not given here).

Let us illustrate INTER with an example. We consider the context in Figure 6.8.
This context has some attributes and some relational attributes. Say that we want to
intersect the attribute {a,∃ r.(X1, Y1)} with the intent of object o1. We call Algo-
rithm 5 with parameters K, {a,∃ r.(X1, Y1)}, {a, c,∃ r(X2, Y2)}. At the beginning,
the set R gets the set intersection of both input sets, that is {a}. However, since the
relational attributes are only known implicitly, it is possible that there are some re-
lational attributes that are not maximal for the intent (and thus not explicitly given
in our context) that are still shared by both sets of attributes. INTER addresses this
problem by recursively computing the intents of the concepts that are used to build
the relational attributes.

Since we are redefining the derivation operators, in the rest of this section we will
not use ·′ as the classical derivation operator. Instead, we will use Intent({o}) to
denote the set of attributes (relational or not) that describe an object o in a context.
This notation is used in Algorithm 6 (IN). Algorithm 6 uses INTER to compute the
intent of a set of objects described only by their maximal relational attributes. It starts
with the set of all explicitly known attributes and intersects it with the description
of each object of the input. The descriptions of the objects, while they are known
implicitly, are completed with INTER for each object.
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Algorithm 6: IN(Ki, O)

Input: Ki = (Oi,Ai, Ii) a formal context, O ⊆ Oi a set of objects.
Output: Computes the intent of a set of objects O.

1 A← Ai
2 foreach o ∈ O do
3 A← INTER(Ki, A, Intent({o}))
4 return A

Algorithm 7 (EX) computes the extent of a set of maximal relational attribute A.
For each object o of the context and each relational attribute ρ r.(X,Y ) in A, EX
checks whether r(o) and X intersect in the correct way, depending on which scaling
operator is used. When a is not a relational attribute, then EX computes its extent in
the classical way. Going back to our example in Figure 6.8, say we want to compute
the extent of {a, b,∃ r.(X1, Y1)}. We start by taking all the objects of our context.
Then, for each scaling operator, we check for each object if its image by the relation
intersects the extent of the corresponding concept, in the correct way. If it does not, it
is removed. At the end, we use the usual set intersection for non-relational attributes.

Algorithm 7: EX(Ki, A)

Input: Ki = (Oi,Ai, Ii) a formal context, A ⊆ Ai a set of attributes.
Output: Computes the extent of a set of attributes A.

1 O ← Oi
2 foreach a ∈ A do
3 if a ∼ ∃∀ r.(X,Y ) then
4 foreach o ∈ O do
5 if r(o) 6⊆ X then
6 O ← O \ o

7 else if a ∼ ∃ r.(X,Y ) then
8 foreach o ∈ O do
9 if r(o) ∩X = ∅ then

10 O ← O \ o

11 else
12 foreach o ∈ O do
13 if (o, a) 6∈ Ii then
14 O ← O \ o

15 return O
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6.3.4 Computing the closed relational neighborhood
Since we do not want only the close relational neighborhood of a concept at depth
one, but at any depth, we also need to extend the starting context with new relational
attributes. We do so in Algorithm 8 (GROWCONTEXT). Algorithm 8 takes as input
a context, a relation from Ki to Kj , a scaling operator, an object o and the set of
object-concepts of Kj . It constructs new relational attributes using the scaling oper-
ator, the relation and the object-concepts, adds them to the context Ki and completes
the incidence relation accordingly. As the set of object-concepts contains the irre-
ducible elements of the lattice, relational attributes constructed with them are enough
to reconstruct all the other possible relational attributes.

Algorithm 8: GROWCONTEXT(Ki, rij , ρ, o, OCj)

Input: Ki = (Oi,Ai, Ii) a formal context, r a relation from Ki to Kj , ρ a
scaling operator, o ∈ Oi an object and OCj the set of object-concepts
of Kj = (Oj ,Aj , Ij).

Output: Extends the context Ki and adds the crosses.
1 if ρ == ∃ then
2 foreach (X,Y ) ∈ OCj such that r(o) ∩X 6= ∅ do
3 Ai ← Ai ∪ {∃ r.(X,Y )}
4 Ii ← Ii ∪ (o,∃ r(X,Y ))

5 if ρ == ∃∀ then
6 Y ← IN(Ki, r(o))
7 Ai ← Ai ∪ {∃∀ r(EX(Ki, Y ), Y )}
8 Ii ← Ii ∪ (o,∃∀ r(EX(Ki, Y ), Y ))

Now that we have redefined the derivation operators on implicitly known rela-
tional contexts and know how to extend a context with relational attributes, we are
able to compute the upper, lower and relational covers of a concept.

Relational cover The easiest are the relational covers. Given a starting concept
(U, V ), a concept (X,Y ) is its relational cover if and only if ρ r.(X,Y ) is a maximal
relational attribute in V .

Upper cover Upper covers are relatively easy to compute too. Candidates can be
generated by adding an object – the set of which we have perfect knowledge of at
any step of the exploration – to the current extent and computing the corresponding
concept. The cover is the set of candidates that have the smallest extent.

Lower cover The lower covers are more challenging. The concepts from the lower
cover could be computed by adding attributes to the intent, but, since the full set
of relational attributes is known only implicitly, this approach would not work. We
chose to, instead, remove objects. The lower covers of a concept (U, V ) are the
concepts with the maximal extents that are contained in U and do not contain any of
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the minimal generators of U . A simple way to compute them would be to remove
minimal transversals of the minimal generators of U .

Algorithm 9 computes the closed relational neighborhood of a concept C. It
takes as input a set of formal context K = {K1, . . .Kw} of a RCF, a strategy
S = {(rij , ρ), . . . } with j ∈ {1, . . . , w} and a starting concept C from a context
Ki of K. The goal is to compute (or complete) the intent corresponding to the extent
of C (possibly augmented by new relational attributes), as well as its upper, lower and
relational covers, in the extended context K+

i .
For each pair (rij , ρ), the first loop (Lines 1 to 4) computes the objet-concepts

of the target context. Then, for each of those object-concepts, we check whether,
together with the relation rij and the scaling operator, it gives rise to a new relational
attribute that is added to the context Ki in GROWCONTEXT.

In Line 5, the intent of concept C is extended with the relational attributes that
were added to the context during the previous loop. The next loop (Lines 6 to 8)
computes the relational cover R of concept C. For each relational attribute in the
intent of C, the corresponding concept (in the target context) is added to the cover. In
the end of the loop, all the relational cover of C is computed.

In Lines 9 to 12, the upper cover U of C is computed. Candidates are created by
adding an object to the extent of C. Only the extent-wise minimal candidates are kept
to be the upper cover of C.

Finally, in Lines 13 to 15, the lower cover L of C is computing by removing from
the extent of C a minimal transversal of the set of its minimal generators.

6.3.5 Example of a step

In this section we give an example of a step based on the RCF given in Tables 6.1
and 6.2. We recall that K = {DM_tools,DBMS} and R = {Supports}. The ex-
ploration strategy that we want to apply considers the relation Supports with the ex-
istential scaling operator. Thus, S = {(Supports,∃)}. Let us start with the concept
C_DM_tools_8 = {({Astah,Erwin DM,ER/Studio,Magic Draw}, {OS:Windows,
DM:Conceptual})}.

The first loop of Algorithm 9 goes through every pair of the strategy in order
to extend the starting context with respect to new relational attributes. Our strategy
consists in only one pair, with a relation that goes from DM_tools to DBMS. We
start by computing the OC-poset of DBMS, that consists of four concepts shown in
Figure 6.9.

For each object o of the starting context DM_tools, we call function GROWCON-
TEXT (Algorithm 8) with parameters DM_tools, Supports, ∃, o and the set of object-
concepts of Figure 6.9. This algorithm checks which relational attributes we sould
extend the starting context with, and add the crosses into the relation. Let us con-
sider the object Astah. The domain of Astah through relation Supports is the set
{MySQL,Oracle}. For each object-concept (X,Y ) that intersects the domain of As-
tah, we add a relational attribute ∃ Supports.(X,Y ) to the starting context. We also
add the crosses between Astah and the relational attribute. When we have done that
for all the objects of the starting context, we have the extended context shown in Ta-
ble 6.5. After the update of the starting context, we update the intent of our starting
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Algorithm 9: RCA(K,S, C,Ki)

Input: K = {K1, . . . ,Kw} a set of formal contexts,
S = {(rij , ρ), . . . }, j ∈ {1, . . . , w} a strategy, C = (O,A) a concept
of context Ki = (Oi,Ai, Ii).

Output: C, U ,R, L the completed concept C and its relational
neighborhood.

1 foreach (rij , ρ) ∈ S do
2 OCj ← OBJECTPOSET(Kj)
3 foreach o ∈ Oi do
4 GROWCONTEXT(Ki, rij , ρ, o, OCj)

5 A← IN(Ki, O)
6 R ← ∅
7 foreach a ∼ ρ r.(X1, Y1) ∈ A do
8 R ← R∪ {(X1, Y1)}
9 U ← ∅

10 foreach o ∈ Oi \O do
11 U ← U ∪ {(EX(Ki, IN(Ki, O ∪ {o})), IN(Ki, O ∪ {o}))}
12 U ← MIN(U ,⊆Oi)
13 L ← ∅
14 foreach T ∈MinTrans(MinGen(O)) do
15 L ← L ∪ {(O \ T, IN(Ki, O \ T ))}
16 return C,U ,R,L

concept. We add the relational attributes to the previous intent. Our concept is now
augmented with ∃ Supports.(C_DBMS_2) and ∃ Supports.(C_DBMS_3) in its intent.

The computation of the closed relational neighborhood comes after Line 6. We
start with the relational cover. For each relational attribute in the updated intent,
we add the corresponding concept in the relational cover. In our example, R takes
C_DBMS_2 and C_DBMS_3.

The upper cover comes next. For each object that is not in the extent of our
starting concept (here it is only MySQL Workbench), we compute the corresponding
concept in the updated context. Our upper cover U receives the top concept, which
intent has been updated: {(>, {OS:Windows,∃ Supports.(C_DBMS_3)})} (concept
C_DM_tools+_10 from Figure 6.10).

For the lower cover, we want to find the minimal transversals of the set of minimal
generator of O. The minimal generators of our extent are {Astah, Erwin DM} and
{Astah, ER/Studio}. This gives {Astah} and {Erwin DM, ER/Studio} as minimal
transversals. When we compute the concept corresponding to O minus one minimal
transversal of its minimal generators, we obtain the two following concepts that have
respectively {Erwin DM,ER/Studio,Magic Draw} and {Astah,Magic Draw} as ex-
tent (concepts C_DM_tools+_5 and C_DM_tools+_6 of Figure 6.10).

The concept lattice that arises from the updated version of DM_tools is shown in
Figure 6.10. Once a user has all the information available about the closed neighbor-
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C_DBMS_1
DT:Enum

DT:Geometry
DT:XML
DT:JSON
DT:Period
Teradata

C_DBMS_2
DT:Spatial
DT:Audio
DT:Image
DT:Video
DT:XML

Oracle

C_DBMS_3
DT:Enum
DT:DT:Set

DT:Geometry
MySQL

C_DBMS_4
DT:Enum

DT:Geometry
DT:XML
DT:JSON
Teradata

PostgreSQL

Figure 6.9: OC-poset of the context DBMS.

hood of their starting concept, they can either stop the exploration, or select a new
starting concept in the closed neighborhood, from which a new step of exploration
can start.

6.3.6 Discussion and future works
The algorithmic process from the previous section has been implemented in RCAEx-
plore5 by the Marel team at the LIRMM, with whom this was a joint work6. Some
tests on real life datasets are in progress in order to measure the impact of the partial
extension of the context and some time saving heuristics (that would allow to bypass
the costly computation of the minimal transversals). It would be interesting to have
a proof that the process converges in the same way that classical RCA does: are all
concepts reachable in a finite number of steps from any starting concept?

5http://dolques.free.fr/rcaexplore/
6In particular with Jessie Carbonnel (for the partial generation of AOC-posets and on-demand RCA)

and Marianne Huchard (for on-demand RCA). Alexandre Bazin was also part of the team on this work.

http://dolques.free.fr/rcaexplore/
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Astah × × × × × ×
Erwin DM × × × × × × × ×
ER/Studio × × × × × × × × ×
Magic Draw × × × × × × × × ×
MySQL Workbench × × × × ×

Table 6.5: At the end of the first loop of our algorithm, the starting context has been
extended with four new relational attributes and the relation has been updated.
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C_DM_tools+_0

C_DM_tools+_1

Magic Draw

C_DM_tools+_2
DM:ETL
ER:Studio

C_DM_tools+_3

MySQL Workbench

C_DM_tools+_4
∃ Supports.(C_DBMS_1)

Erwin DM

C_DM_tools+_5

Astah

C_DM_tools+_6
DM:Logical

∃ Supports.(C_DBMS_4)

C_DM_tools+_7
OS:Linux
OS:Mac

C_DM_tools+_8
DM:Physical

C_DM_tools+_9
DM:Conceptual

∃ Supports.(C_DBMS_2)

C_DM_tools+_10
OS:Windows

∃ Supports.(C_DBMS_3)

Figure 6.10: Concept lattice that corresponds to the augmented context DM_tools+

(simplified representation).
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7.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.1.1 Identification and authentication, a heavy process . . . . 103
7.1.2 Related works: implicit authentication and classification . 105

7.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.1 Preliminaries and measures . . . . . . . . . . . . . . . . 106
7.2.2 Closed-set based classifier . . . . . . . . . . . . . . . . . 109
7.2.3 Bayesian model . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.1 Description of our dataset . . . . . . . . . . . . . . . . . 112
7.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 113

This chapter, last of the more applied part of this dissertation deals with classifi-
cation as a data mining task. It is organised as follows. First, we will describe why, as
in which applicative context, we will use classification. Then, we present the formal
framework in which we operate, which is closely related to both our applicative con-
text and to the mathematics involved in all the previous chapters. Then, we introduce
the model of our classifier and compare it to other models. Finally, we dive into an
experimental study of classification of web browsing data.

7.1 Context

7.1.1 Identification and authentication, a heavy process
Virtually all the services that are provided to users have an online alternative. Think
about banks, health, insurance companies, traval, commerce,etc. It is popularly ac-
knowledged that online services lead to less time loss and stress that physical offices
do. 1

1Although online services have a lot of problems and limitations, they are not the object of this study.
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Such an online interface with an agency poses problems of security. Banking or
health data are sensitive data that we do not want anyone to have access to. This
calls for enhanced security measures, in addition to the classical login and password
couple. It is common for banks to have a secondary (physical) key that delivers either
a precalculated key, or some proof of identity from the user. For example, when you
are accessing an online banking system, the bank can send you a text message on your
phone with an additional password. Such a process of authentication, that demands
an action from the user, is called explicit.

This adds to the weight of a system: the compromise of security versus user-
friendliness goes in the direction of security. This implies that more transactions are
abandoned before reaching their end. In a case of a bank, this might not be the end of
the world, but when the online task is inherent to the business model of a company,
then this company cannot afford to let too many transactions go south.

On the other hand, when the system studies the user’s behaviour in order to iden-
tificate him, or to validate some declared identity, then the authentication is said to
be implicit: no actions from the user are needed to authenticate him, other than the
actions he was already going to do on the system. Implicit authentication answers the
question “Am I who I claim to be ?”, as stated in this paper about implicit authenti-
cation in mobile devices [64]. The answer to this question can be a clear yes or no, or
a more temperate answer, with some degree of confidence. However the universe of
possible answers is still binary.

A closely related problem is implicit identification. The question that we want to
answer is now “Who is this?”. We do not have a binary output anymore, as we will
see in section 7.3, where we have a pool of three hundred users to choose from.

We approach this problem by designing a classifier that guesses the corresponding
user from a given anonymous behaviour. Through this classifier, we will be able to
authenticate a user as follows: if the classifier correlates the right user behind the
current anonymous behaviour, then the user is authenticated. Otherwise they may
be rejected. Figure 7.1 shows the classical learning schema that is followed by our
classifier.

Learning algorithm Trained classifier
Implicit identification
User authentication

Past behaviour Anonymous behaviour

Figure 7.1: We start by training the classifier on some past behaviour. Then, from an
anonymous behaviour, the trained classifier choses a class for this behaviour. If the
class corresponds to the announced user, then we can authenticate them, if not, the
user is rejected (or a stronger, more engaging means of authentication is asked).
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7.1.2 Related works: implicit authentication and classification

Quickly after they became so widely used, mobilephones and smartphones picked up
implicit authentication systems. In [65], the authors studied behaviour based on vari-
ables that are specific to smartphones (calls, texts, browsing between applications,
location and time). Their experiments are based on the data for fifty users, over a
period of twelve days. They gathered the data by using an application instaled by
volonteers. The user profiles were built up from how frequently positive and nega-
tive events occurred, and their location. In this context, a positive event is an event
consistent with the information gathered upsteam. As an example, calling a number
which is in the phone’s directory is a positive event. The results of this study show
that based on around ten actions, one can detect fraudulent use of a smartphone with
an accuracy of around 95%.

In a quite different context, in [66], the authors rely on Bayesian classification in
order to associate a behaviour class with some video streaming user. Their simulated
dataset consists of one thousand users over a course of one hundred days. They take
into account the flow, the type of program, the duration of a session, the type of user
and the popularity of the video. However, their results are not accurate enough for a
security point of view, since their model has an accuracy of around fifty percent.

The particular context of implicit authentication in web browsing, which consti-
tutes our case study, was studied in [67], [68], [69] and [70].

In [67], Yang designed a similar strategy and introduces a complete experimental
protocol for authentication of web users. This study uses the domain name, the num-
ber of pages viewed, the session start time and its duration as characteristic variables.
The dataset, which was gathered by a service provider, consists of the web-browsing
history of 50,000 volonteers for over a year. The experiments are then carried on a
subset of at most one hundred users. In her study, each class is described by a set
of singletons with either the best support (number of appearances in the database) or
the best lift (based on the number of appearance for a given class, compared to the
number of appearances in the whole database). We included both of her heuristics
in our experimental study. This study shows that for small anonymous behaviours
that involve up to twenty websites, the most effective models are still the traditional
classification models such as decision tree. On the other hand, whenever the anony-
mous behaviour exceeds seventy websites, the support-based and lift-based classifier
are more efficient.

The study by Abramson and Aha [70], conducted on ten users over a one-month
period, did not enable to build a significant model for distinguishing users. They
conclude that no variable taken individually enables a user to be authenticated. Addi-
tionally, the size of the dataset remains a determining parameter: the learning phase
needs time and a lot of data to be fed with.

In [71], drawing inspiration from Yang, Hermann, Banse and Federrath studied
several techniques for analyzing a user who holds a dynamic IP address, based on
behaviour models. They compare three methods: 1-nearest neighbour, multinominal
Bayesian classifier and the same pattern mining technique based on support and lift
used by Yang. They have records of DNS requests for three thousand and six hundred
users over a two-month period. In this study, only the most significant variables and
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the most popular host names were considered. The accuracy rates for their models are
satisfactory.

From our point of view, Yang’s study [67] is very detailed, rigorous and accurate.
For this reason, we faithfully reproduce here the author’s experimental protocol. The
strategy that we adopt is to identify for each user the list of patterns that best charac-
terize their behaviour, but without limitation on the size (Yang allows only patterns
of size one). We also handle closed sets in our classifier. Our objective is to show
that it is more efficient to extract closed patterns of different size (essentially concept
intents).

Our classifier is inspired by classification in concept lattices. More precisely,
Kuznetsov designed, in [72] and [73], a classifier that works in concept lattices from
positive and negative examples, by taking some inspiration in the work of Finn [74]
that describe a plausible reasonning JSM type system. However, using directly this
binary classifier in our context would label most of the anonymous behaviours as non-
identifiable. For this reason, we adapted this classifier by using some more measures
to select some particular patterns for each users, and the nearest neigbour method to
take the final decision of the classification.

In 2007, Ramamohanarao and Han [75] defined emerging patterns as patterns that
appear frequently on the objects of a single class, but are harder to find in other classes.
For two surveys on emerging patterns, we advise the reader to consult [76] and [77].
A difficulty remains in selecting the most efficient emerging patterns among the large
number of patterns. Ramamohanarao and Han [75] used the support to define which
pattern are emerging. In our study, we show that the tf-idf parameter (mostly used in
information retrieval, cf. [78]) is also efficient.

7.2 Model
In this section, we describe our formal model to perform implicit authentication. This
model was introduced before my academic birth 2, and thus my contributions are more
related to heuristics and experiments rather than to designing the model. Nevertheless,
in order to have an understanding of the heuristics and why we even consider them, it
is necessary to be familiar with the model as a whole.

7.2.1 Preliminaries and measures
We want to start from a list of events for each user. As we will see in the experiments
section, each event in our data includes the user identifier, a time stamp and the name
of the website that the user wanted to reach. First of all, we separate the data for each
user to constitute a (multi)set of sessions 3. The sessions are sets of websites that the
user visited. We consider that the size of those sets is fixed 4. Taking into account the
time stamp associated to each entry, we can build the set of sessions associated to a

2Preliminary versions of this work started during Diyé Dia’s thesis work at the LIMOS, and appeared
in [79], [80] and [81].

3A user can have two or more identical sessions.
4In our experimental protocol, we fix the size of a session to be ten. This choice remains subjective and

the size should be a natural parameter of the study.
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Alex Bill
t1 Alex a t′1 Bill d
t2 Alex b t′2 Bill a
t3 Alex c t′3 Bill g
t4 Alex d t′4 Bill h
t5 Alex e t′5 Bill a
t6 Alex c t′6 Bill g
t7 Alex f t′7 Bill d
t8 Alex b t′8 Bill e
t9 Alex c t′9 Bill a
t10 Alex d t′10 Bill d
t11 Alex a t′11 Bill e
t12 Alex e t′12 Bill g

SAlex = {{a, b, c, d}, {e, c, f, b}, {c, d, a, e}}
SBill = {{d, a, g, h}, {a, g, d, e}, {a, d, e, g}}

XAlex = {a, b, c, d, e, f}
XBill = {a, d, e, g, h}
X = {a, b, c, d, e, f, g, h}

Figure 7.2: Alex and Bill each have a list of events (represented by letters from the
alphabet), that are labeled with some time stamps going from t1 to t12 and t′1 to t′12.
While building the sessions, we group the events by sets of four, keeping only the
name of the website. Duplicates are deleted from sessions at this point (a succession
of events abacd becomes a four elements session {a, b, c, d}).

user according to the natural order of the events. However, we drop the ordering after
this phase and consider the sessions to be sets.

For a user u, we denote by Su the set of sessions associated to this particular user.
We denote S the union of all the sessions of the database. Similarly, we call Xu the
set of websites that are visited at least once by user u and X the set of all the websites
of the database.

Let us consider a running example, that is presented in Figure 7.2. In our example,
to ease the calculations, the sessions are of a fixed size four. We consider two users,
Alex and Bill, that each have an associated list of events. These events are grouped in
sets of four, depending on the time stamps. The ordering is, however, lost.

From now on, what we will call patterns are sets of websites that appear in a
given session of a given user. We call a pattern a k-pattern when it has size k. In the
following, we present the different measures that we will use to evaluate the quality
of the patterns.

Definition 70 (Support and Lift). Let S be a set of sessions. The support of a pattern
P in S is the percentage of sessions of S that contain P :

SupportS(P ) =
|{S ∈ S | P ⊆ S}|

|S|
.
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By extension, the support of a pattern P in the list of session Su of a user u is

Supportu =
|{S ∈ Su | P ⊆ S}|

|Su|
.

For a given user u and a pattern P , the relative support of P , for user u is

Relu(P ) =
Supportu(P )

SupportS(P )
.

The support measures the strength of a pattern in behavioral description of a given
user. The relative support mitigates the support by considering the pattern’s support
on the whole dataset. If a pattern appears a lot for every user, it is not characteristic
and does not allow to discriminate between users.

For example, going back to our Figure 7.2, let us consider the patterns {a, d} and
{e, g}. The support of {a, d} for Bill is high: SupportBill({a, d}) = 1, this pat-
tern present in all three of Bill’s sessions. The support of {e, g} for Bill is lower:
SupportBill({e, g}) = 2/3. However, when we mitigate these measures with the
relative support, we can see that the pattern {e, g}, while having a smaller support
in Bill’s session, might be more characteristic of him. Let us compute the rela-
tive support for our two patterns, for Bill: RelBill({a, d}) = 1/(5/6) = 1.2 while
RelBill({e, g}) = (2/3)/(2/6) = 2.

The tf-idf measure is a numerical statistic that is intended to reflect how relevant a
word is to a document in a corpus of documents. The tf-idf value increases proportion-
ally to the number of times a word appears in the document, but is counterbalanced
by the frequency of the word in the whole corpus [78]. We adapt this measure by
applying it to patterns, sessions and database.

Definition 71 (tf-idf). Let P be a pattern, U the set of all the users, and UP the
set of the users that have P in a least one of their sessions. For a given user u, the
normalized term frequency (tf) of a pattern P , denoted tf(P ) is the support of P in
this users’ sessions. The inverse document frequency (idf) of a pattern P , denoted
idf(P ) is log(|U |/|UP ). Then the tf-idf of a pattern P , for a user u is

tf × idfu(P ) = Supportu(P )× log

(
|U |
|UP |

)
.

Going back to our running example. Since we have two users, |U | = 2. We
consider the patterns {b, c} and {a, d}. Since {b, c} appears only in Alex’s sessions,
|U{b,c}| = 1. For {a, d}, we have |U{a,d}| = 2. Computing the tf-idf of both patterns
for Alex gives us tf × idfAlex({b, c} = SupportAlex({b, c}) × log 2 ≈ 0.46 and
tf × idfAlex({a, d} = SupportAlex({a, d})× log 1 = 0.

Until now, the patterns that we used to define our measures were simply sets.
From now on, we want to handle closed patterns. We consider that a pattern is closed
if it is an intent, that is if it cannot be extended with new websites while maintaining
the same support (the size of the extent). We show the concept lattice associated with
Alex’s sessions in Figure 7.3.

Let P be a pattern. We denote by P c the closure of P . In order to validate the use
of the closed patterns, we will observe the following facts.
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c

ce acd bc

acde bcef abcd

abcdef

Figure 7.3: The concept lattice that corresponds to the lattice of closed patterns for
Alex. Only the attributes are represented: since the objects are artificial session iden-
tifyiers, they do not carry useful information.

• Let P be a pattern, then Supportu(P ) = Supportu(P c): by definition of
our closure operator, the support does not decrease when applying the closure
operator to a pattern in the set of sessions of a given user u.

• Let P be a pattern, then Relu(P ) ≤ Relu(P c).

• Let P be a pattern, then tf × idfu(P ) ≤ tf × idfu(P c).

It is noteworthy to mention that the support is an antimonotonic measure (that
decreases when the pattern grows in size), while the relative support and the tf-idf are
not.

7.2.2 Closed-set based classifier
The approach that we chose for our classifier is based on three points:

1. Pattern selection: from a dataset of web browsing logs, we compute a set of
distinguishing patterns for each user.

2. Profile computation: from the patterns, we compute a vector, common to every
user, and compute its component for each user. By this way, all the users are
embedded in a common space.

3. Identification step: using the profile vectors, we search the nearest neigbour of
an anonymous set of sessions using some similarity functions. We then com-
pute confusion matrices and provide accuracy rates for our model.

Pattern selection

The pattern selection is the first and most important step in our model. It is this phase
that changes depending on which heuristic we apply. We compute, for each user, their
set of distinguishing patterns. This set is denoted Pu for user u.
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The heuristics that we consider mainly change in their way of choosing the pat-
terns for each user. In [67], each class is described by a set of 1-patterns with the best
support or the best relative support. We call those two approaches Hsup and HRel. In
our methods, we want to develop some heuristic using closed patterns. We consider
three such heuristics: Hc

tf−idf that selects closed patterns based on their tf-idf, Hc
sup

that considers closed patterns with the largest support and Hc
supMin that considers

closed patterns that have the largest support and are minimal with respect to set inclu-
sion (among the patterns for a user). We compared the performances of our heuristics
and compiled the results in Figure 7.5. Those are fairly simple heuristics, that are
based on simple measures of the “quality” of the patterns. In [82], Kuznetsov and
Makhalova give a detailed survey on more complex measures of “quality” for con-
cepts (such as stability, the amount of subset of the extent that are themselves extents,
or robustness).

In the preliminary version of our tool, the closed patterns are computed using the
Charm algorithm [83] provided by the Coron platform [84]. Since the tool imple-
menting our classifier is more a proof of concept than a working tool, we do not use
the monotony of the measures to prune the dataspace but rather compute all the closed
patterns and choose the ones that correspond to our heuristics.

Profile computation

We define Pall =
⋃
u∈U Pu to be the set of all the patterns, for all the users. This set

allows us to define a common space in which all the users may be embedded. In a
more formal way, Pall defines a vector space V of size |Pall| where a given user u is
represented by a vector Vu = 〈mu,1, . . . ,mu,|Pall|〉 where mu,i is a numerical value
associated to the user u, for the pattern Pi, for i between 1 and |Pall| (Figure 7.4).

Vu =
mu1,1 mu,2 . . . mu,|Pall|
P1 P2 . . . P|Pall|

Figure 7.4: Each user is associated with such a vector, where numerical values are
given for its descriptive patterns based on the support, the lift or the tf-idf.

That numerical value depends on the heuristic: we use the same measure here as
the one that was used to choose the distinguishing patterns fo each user. Experiments
confirm that the best accuracies are obtained when the measure that is used to choose
the patterns and the one used to compute the profile concord.

Identification step

The identification step consists in trying to guess the user that corresponds to a set
of anonymous sessions. All the sessions that are fed to the classifier in this step
naturally come from the same user. For every set of anonymous sessions, we compute
its numerical value for every component of the vector space.

The performances of our models are calculated on sets of anonymous sessions of
growing size: from one session to thirty-five. Of course, the bigger our anonymous
set is, the better the classification will be.
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Let Sanon be a set of anonymous sessions. Using a distance function, we fill the
vector Vanon = 〈manon,1, . . . ,manon,|Pall|〉 with the measure that corresponds to the
heuristic. We want to compute its distance to other profile vector.

In order to compute the distance between the profile vector, we present some
similarity functions. Let Vi = 〈mi,1, . . . ,mi,|Pall|〉 and Vj = 〈mj,1, . . . ,mj,|Pall|〉
be two vectors. Let all be the size of Pall.

The Euclidean distance between two vectors Vi and Vj , denoted Euclidean(Vi,
Vj) is

Euclidean(Vi, Vj) =

√√√√ all∑
`=1

(mj,` −mi,`)2.

The Cosine similarity between two vectors Vi and Vj , denoted Cosine(Vi, Vj) is

Cosine(Vi, Vj) =

∑all
`=1(mj,` −mi,`)√∑all

`=1(mj,`)2 ×
∑all
`=1(mi,`)2

.

The Kulczynski similarity between two vectors Vi and Vj , denoted Kulczyn
ski(Vi, Vj) is

Kulczinski(Vi, Vj) =

∑all
`=1min(mi,`,mj,`)∑all
`=1 ||mj,` −mi,`||

, ||r|| denotes the absolute value of r.

The Dice similarity between two vectors Vi and Vj , denoted Dice(Vi, Vj) is

Dive(Vi, Vj) =
2×

∑all
j=1(mi,` ×mj,`)∑all

`=1(mi,`)2 +
∑all
`=1(mj,`)2

.

The performances of the heuristics depending on the similarity functions are com-
pared in Figure 7.6 and 7.7.

7.2.3 Bayesian model
To serve as a “control group” for our experiments, we will compare all the heuristics
to a Bayesian classifier. We recall that S is the set of all the sessions of the database,
that can be mapped to our set of users. A Bayesian classifier states that an anonymous
session S is assigned to a user i if and only if there is no user j different than i, such
that P (i | S) ≥ P (j | S), with P (A | B) the conditional probability that A, given
that B. Bayes theorem tells us:

P (u | S) =
P (S | u)P (u)

P (S)
.

In practice, we are interested only in the term P (S | u) of the fraction. For a
session of ` websites s1 to s`, under the assumption that websites are independent
variables, P (S | u) becomes

∏`
i=0 P (si | u). For a given website si and user u, the

probability P (si | u) is calculated from the learning database. Since a website si is
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not a continuous value, we can define P (si | u) as the number of sessions of user u
that contain si, divided by the number of sessions of user u.

The major drawback with the traditionnal Bayes classifier is that a website that
appears in an anonymous session but never occurs in the learning data will produce
a probability equal to zero. To avoid this problem, we apply the Laplace smoothing
(or add-one smoothing), which adds one to the support of each descriptor that appears
in the dataset. This way, the unknown descriptor will have a support of one over the
number of session, and all other descriptors will see their support augmented of the
same amount. The frequency-based estimation of the probability will thus never be
zero. From now on, when we refer to Bayes classifier, we are actually discussing the
smoothed Bayes classifier.

7.3 Experiments

In this section, we give some experimental results. We start by describing precisely
our dataset, which we consider as one of the contributions of this work. Then, we give
a description of our experimental protocol and some results. We end on an analysis
of the results and a discussion.

7.3.1 Description of our dataset

Our data comes from the proxy servers at the Blaise Pascal University. It was collected
over a period of nine months during the school year 2013. It consists of seventeen
million lines of connection logs from more than three thousand users and contains the
user ID, a timestamp and a domain name for each entry. We applied two types of filters
on the domain name in order to pre-process our data; our objective was to remove the
entries that do not correspond to a deliberate action from the user. First, we applied
blacklist filters. We used some lists of domain names considered as advertising 5, and
removed the corresponding entries from our dataset. We also filtered the data using
the status code obtained after a simple HTTP request on the domain name. 6 After
those steps, our clean(ed) dataset has four million lines. Table 7.1 shows some key
numbers about our dataset, before and after the preprocessing.

#Users #Sites Avg #lines/user
Raw data 3388 96184 5082

After Preprocessing 3370 57654 1145

Table 7.1: Our pre-processing hopes to automatically remove actions that are not from
the user.

We divided our file into the remaining three thousand users to obtain the class
files. This dataset is available at http://fc.isima.fr/~kahngi/cez13.

5http://winhelp2002.mvpe.org/hosts.htm and https://pgl.yoyo.org/as
6This filter is more error prone, since we applied this filter one year and a half after the data was

collected. Still, most of the domain names that were erased in this fashion were nonsensicals.

http://fc.isima.fr/~kahngi/cez13.zip
http://fc.isima.fr/~kahngi/cez13.zip
http://winhelp2002.mvpe.org/hosts.htm
https://pgl.yoyo.org/as
http://fc.isima.fr/~kahngi/cez13.zip
http://fc.isima.fr/~kahngi/cez13.zip
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zip. The experimental study was conducted on the one hundred and fifty more active
users.

7.3.2 Experiments

We fix a set of values for the number of anonymous sessions that we feed to our
classifier. We test performances for the values one, three, five, ten, twenty, thirty and
thirty-five. Clearly, the classification task is harder with less sessions.

Comparison between Hc
tf−idf , Hc

sup and Hc
supMin

We recall that Hc
tf−idf , Hc

sup and Hc
supMin are heuristics that consider only closed

sets. The first uses the tf-idf as a discriminating measure, the second uses the support
and the last uses the support and a test of inclusion. We executed those three heuristics
on our dataset of 150 classes, using anonymous sets of sessions from one to thirty-five
sessions. We fixed a limit on the number of patterns for each user (140 patterns) and
their size (seven websites). Since the average size of a session is ten, patterns of size
more than seven are rare. The results are smoothed over ten executions. Figure 7.5
compares the accuracy of the three heuristics based on closed-sets with the Bayes
classifier.
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Figure 7.5: Comparative performance of Hc
tf−idf , Hc

sup, Hc
supMin and Bayes on the

dataset of 150 users. The number of patterns per user is fixed to 140 and their maximal
size to 7. Measured values are smoothed on 10 executions.

From Figure 7.5 we can see that the three heuristics based on closed-sets reach an
accuracy of more than 90% when the size of the anonymous set of sessions is suffi-
ciently large (beyond 25 sessions). We can also see that Hc

tf−idf and the Bayes clas-
sifier can succesfully classifier one user among 150 with only one session in around
30% of cases. This proportion reaches 50% for three sessions for Hc

tf−idf , and 60%

http://fc.isima.fr/~kahngi/cez13.zip
http://fc.isima.fr/~kahngi/cez13.zip
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for Bayes. We can also see that Hc
sup has lower accuracy than the other heuristics,

which back up the idea that support is not the best measure to be used on its own.

Comparison with Hsup and HRel

We compare our results with those by Yang [67], in Table 7.2. Table 7.2 shows results
for three classes of methods: statistical (with the smoothed Bayesian methods), abso-
lutes (Hsup and Hc

sup rely on the support, and absolute measure) and relative (HRel

and Hc
tf−idf ). We restrict our heuristics by only considering patterns of size one (for

this reason, Hc
supMin is not represented). We can see that for 2, 10, 50, 100 or 150

classes, all the heuristics tend to have similar results with a high number of sessions.
This validates that the behaviour of a user on the web, represented by the list of the
websites they visited, allows to identify them. Since from around ten sessions, the
accuracy of the classifier (whichever method and number of classes is considered)
is beyond 80%, our challenge is then to identify a user from the smallest possible
number of sessions.

When we only have one session, the Bayes classifier and Hc
tf−idf give similar

accuracy rates, but are both outperformed by HRel. We can observe that the accu-
racy rates of the heuristics based on relative methods are significantly better than the
results obtained with the support. Moreover, selecting the 1-patterns with best sup-
port is not less efficient than selecting the frequent closed-1-patterns, as shown by the
comparability between Hsup and Hc

sup. If anything, Hsup is more efficient because it
selects more patterns in this case.

Size matters

Table 7.3 shows the repartition of patterns by size, depending on the heuristic. We can
see that Hc

tf−idf and Hc
sup prefer patterns of more than one element. For example,

for heuristic Hc
tf−idf , the size of the pattern produces a normal distribution centered

at three. This distribution is obtained when we allow 140 patterns per user.

Comparative performances when varying the distances

In Figure 7.6 and 7.7, we show the effect of the similarity measure on the accuracy
rate. Figure 7.6 shows the results for heuristic Hc

tf−idf while Figure 7.7 shows the
results for Hc

supMin.

Conclusion and discussion
In this chapter, we consider a case study of authentication of users from web-browsing
logs. Our classifier and heuristics are based on closed-sets as descriptions of users. We
compared ourselves to the results in the litterature, and obtained comparable results.

Since the challenge of implicit authentication finds its roots in a security concern,
it is important to be able to recognize users from the least possible number of actions.
In this regard, our classifier performs well, but has smaller accuracy rates than the
statistical classifier Bayes, or the 1-pattern based classifier introduced by Yang (not
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# Users # Sessions Bayes HSup Hc
sup HLift Hc

tf−idf
2 1 0.88 0.83 0.82 0.95(0.65) 0.96 (0.63)

10 0.97 1 1 0.95 1
20 1 1 1 1 1
30 1 1 1 1 1

10 1 0.71 0.55 0.53 0.83(0.64) 0.62
10 0.99 0.88 0.88 0.94 0.97
20 0.91 1 1 0.98 1
30 0.96 1 1 1 1

50 1 0.47 0.31 0.30 0.53(0.85) 0.39
10 0.90 0.89 0.88 0.87 0.92
20 0.91 0.94 0.94 0.93 0.99
30 0.88 0.98 0.98 0.98 1

100 1 0.40 0.25 0.24 0.43 0.33
10 0.88 0.83 0.82 0.84 0.88
20 0.88 0.95 0.95 0.92 0.98
30 0.87 0.98 0.98 0.95 1

150 1 0.35 0.21 0.20 0.39 0.28
10 0.85 0.80 0.78 0.79 0.85
20 0.86 0.94 0.93 0.90 0.98
30 0.84 0.98 0.97 0.92 1

Table 7.2: On the left we find the number of users and the size of the anonymous set of
sessions. Sessions are of size 10. The accuracy rates are smoothed on 10 executions,
the highest values are in bold. To compare fairly the different approaches we applied
the best parameters to each one. This way, we used the cosine similarity for HSup,
Hc
Sup and HLift and the Kulczynski similarity for Hc

tf−idf . All methods computes
1-patterns.

by a great margin, but still). However, Bayes classifier works as a black box, and
Yang’s 1-patterns lack expressivity. Closed patterns tend to be of a greater size than
non-closed. This allows for a domain expert to be able to understand more of their
system. In web-browsing logs, this is not a critical issue. However, that is not the only
area where our work was considered. In a partnership with the company Almerys 7,
the expressivity allowed by our classifier is a plus in a context of health insurance.
As a part of the project that launched my thesis, there were discussions to apply
this classifier and some learning methods, based on closed-sets, to some enterprise
ressource planning softwares.

In this direction of expressivity of the data, one could ask why we used closed-sets
in place of some particular closed-sets such as introducers concepts. In this case, we
did not use introducer concepts because of the nature of the objects. In our context,
the objects are artificial sessions, created arbitrarily to be of size ten. In order to
use introducer concepts, objects need to have a semantic significance: in software
engineering, objects are valid configuration that have a real role. To allow that, we

7http://www.be-almerys.com/

http://www.be-almerys.com/
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Heuristic 1 2 3 4 5 6 7
Hc
tf−idf 8.7% 25.8% 30.3% 20.8% 9.7% 3.5% 1.2%
Hc
sup 11.7% 33.6% 33.1% 15.5% 4.1% 0.8% 1.2%

Hc
supMin 87.6% 9.5% 1.8% 0.5% 0.16% 0.02% 0.01%

Table 7.3: For each heuristic, we give a repartition of the pattern by size. Recall that
the size is user-defined to be bounded by seven. Those values are smoothed on 30
runs.
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Figure 7.6: Comparison between the similarity measures, using Hc
tf−idf .

would need to use other ways of delimiting sessions, possibly with the time stamp, or
with a physical identifier.

Speaking of arbitrary separation of the dataset, we can consider that separating
users is a loss of information. We can consider that the whole dataset is in fact triadic:
users×sessions×websites. With that in mind, and possibly a better partition of the
logs into more meaningful sessions, we can for example extract 3-concepts in order
to have some information that spans across users instead of separating them. The
same model as before can still be kept using the introducer 3-concepts on the users
dimension.



7.3. EXPERIMENTS 117

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Number of test sessions

A
cc

u
ra

cy

Cosine Euclidean
Dice Kulczynski

Figure 7.7: Comparison between the similarity measures, using Hc
supMin.



118 CHAPTER 7. LATTICE BASED USER CLASSIFICATION



Conclusion

So, here we are, nearing the end. Our journey took us first in Combinatorial places,
where we reflected upon the maximal size of d-lattices. We started from dimension
three, to find a close interval where the actual value for the maximal size of a 3-lattice
lives. The upper bound of this interval was computed using a method of measure
and conquer, with an articulated proof based on a case study. The lower bound was
constructed using a small 3-context with a lot of 3-concepts, and by multiplying its
the 3-concepts with a product of contexts. This construction allowed us to consider
another view of powerset d-lattices.

This work has left some unanswered questions. What is the actual maximal size
for a 3-lattice (we conjectured that it might be

(
27
8

)n
for an n × n × n context)? Is

there a more automated way of computing bounds for dimension d?
Our next stop, still in Combinatorial waters, was the average case. We discussed

the average number of implications in some implication bases and the number of
concepts in two dimensions, and later in d-dimensions. We also discussed the pitfalls
of randomly generating contexts, a subject that is of increasing concern in the FCA
community.

The main question that remains open is the average size of the Duquenne-Guigues
implication base, the smallest base cardinality-wise. The approach that we used can-
not be used to compute the average size of the Duquenne-Guigues base. Indeed, the
recursive nature of pseudo-intents makes approximating their number on average a
difficult task.

We then entered the Algorithms part of the journey. Once again, this part was
divided into two chapters. In the first chapter, we introduced an incremental algorithm
to compute the d-concepts of a d-context. This algorithm considers the not-so-usual
task of computing the d-concepts of a d-context after a new element has been added
to the d-context. Once this problem was solved, there was a natural algorithm to
compute all the d-concepts of a d-concepts from scratch.

The possible extensions of this work would be a comparison between our algo-
rithm and the other algorithms from the literature. Moreover, either by changing our
algorithm or by using a totally novel approach, it would be interesting to compute the
order structure that comes with the elements of the d-lattice.

The second chapter of the Algorithms realm did not propose an algorithm strictly
speaking. Instead, we studied reduction and introducer d-concepts. Those concepts
play a key role in many applications in two dimensions, mainly by reducing the com-
plexity and the number of objects to consider.
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The obvious continuation of this work is to try to find applications in which we
could use introducer concepts. Usually, a backward step allows to climb in abstrac-
tion, as we have seen in the previous chapter, where all the datasets induced by the
users can be seen as a unique three dimensional dataset. Since two dimensional intro-
ducer concepts are mainly used in software engineering, it might be the best place to
start to find meaningful applications of multidimensional introducer concepts.

When we entered the last part of the dissertation, called Applications, we vowed
not to leave data and applied uses of our lattices behind. The chapter part concerned
exploration. Data exploration allows to browse a potentially enormous universe with-
out actually having to generate it fully. We started by looking more closely at the
poset of introducer 2-concepts. In a context of software engineering, we developed
an algorithm that retrieves the upper cover and the lower cover of any set of features
(basically attributes). We also extended this exploration strategy to relational lattice
families, and developed some algorithm to browse a family of lattices induced by
RCA.

This work still has some open questions. Does our version of RCA converge to a
fixed point? Is it really applicable to real life datasets? We hope to be able to answer
them in a close future.

Our last chapter dealt with classification of users from web-browsing logs. We
used 2-concepts to build profiles for users and used those profiles to recognize anony-
mous behaviours. Our results are comparable in terms of performances with the liter-
ature.

The next step in this matter is to try to implement a classifier using 3-concepts, in
order to group users by their behaviour. We would also like to develop a cartography
of users depending of their behaviour in a system. This approach is of obvious interest
for many real life applications and businesses.

In the course of this dissertation, we saw that lattices and their multidimensional
generalization are objects of interest both theoretically and in data analysis. Their
central position in several problems of data analysis puts them into focus for most of
theoretical studies in data sciences. Plus, lattices are cool.
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[14] Zbigniew Lonc and Mirosław Truszczyński. On the number of minimal transver-
sals in 3-uniform hypergraphs. Discrete Mathematics, 308(16):3668–3687,
2008.

[15] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer
approach for the analysis of exact algorithms. J. ACM, 56(5):25:1–25:32, 2009.

[16] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer
Science & Business Media, 2010.

[17] Sergei O. Kuznetsov. On the intractability of computing the Duquenne-Guigues
base. J. UCS, 10(8):927–933, 2004.

[18] William Ward Armstrong. Dependency structures of database relationship. In-
formation processing, pages 580–583, 1974.

[19] Jean-Louis Guigues and Vincent Duquenne. Familles minimales d’implications
informatives résultant d’un tableau de données binaires. Mathématiques et Sci-
ences humaines, 95:5–18, 1986.

[20] Sergei O. Kuznetsov and Sergei A. Obiedkov. Some decision and counting prob-
lems of the Duquenne-Guigues basis of implications. Discrete Applied Mathe-
matics, 156(11):1994–2003, 2008.

[21] Mikhail A. Babin and Sergei O. Kuznetsov. Recognizing pseudo-intents is conp-
complete. In Proceedings of the 7th International Conference on Concept Lat-
tices and Their Applications, Sevilla, Spain, October 19-21, 2010, pages 294–
301, 2010.

[22] Felix Distel and Baris Şertkaya. On the complexity of enumerating pseudo-
intents. Discrete Applied Mathematics, 159(6):450–466, 2011.

[23] Mikhail A. Babin and Sergei O. Kuznetsov. Computing premises of a minimal
cover of functional dependencies is intractable. Discrete Applied Mathematics,
161(6):742–749, 2013.

[24] Karell Bertet and Bernard Monjardet. The multiple facets of the canonical direct
unit implicational basis. Theor. Comput. Sci., 411(22-24):2155–2166, 2010.

[25] Uwe Ryssel, Felix Distel, and Daniel Borchmann. Fast algorithms for impli-
cation bases and attribute exploration using proper premises. Ann. Math. Artif.
Intell., 70(1-2):25–53, 2014.

[26] Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization
of monotone disjunctive normal forms. J. Algorithms, 21(3):618–628, 1996.

[27] Julien David, Loïck Lhote, Arnaud Mary, and François Rioult. An average study
of hypergraphs and their minimal transversals. Theor. Comput. Sci., 596:124–
141, 2015.
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